

ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER
EVENT CORRELATION QUERY PERFORMANCE

THESIS

Smile T. Ludovice, Master Sergeant, USAF

AFIT/GIR/ENV/12-M03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the United States Government

and is not subject to copyright protection in the United States.

AFIT/GIR/ENV/12-M03

ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT

CORRELATION QUERY PERFORMANCE

THESIS

Presented to the Faculty

Department of Systems and Engineering Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Information Resource Management

Smile T. Ludovice, BS

Master Sergeant, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GIR/ENV/12-M03

ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT

CORRELATION QUERY PERFORMANCE

Smile T. Ludovice, BS
Master Sergeant, USAF

Approved:

 S I G N E D -- 8 Mar 12
__ ______________
Michael R. Grimaila, PhD, CISM, CISSP (Chairman) Date

 S I G N E D -- 8 Mar 12
__ ______________
Robert F. Mills, PhD (Member) Date

 S I G N E D -- 8 Mar 12
__ ______________
Brent T. Langhals, LtCol, PhD (Member) Date

iv

AFIT/GIR/ENV/12-M03
Abstract

 A critical capability required in the operation of cyberspace is the ability to maintain

situational awareness of the status of the infrastructure elements that comprise cyberspace.

Event logs from cyber devices can yield significant information, and when properly utilized can

provide timely situational awareness about the state of the cyber infrastructure. In addition,

proper Information Assurance requires the validation and verification of the integrity of results

generated by a commercial log analysis tool. Event log analysis can be performed using

relational databases. To enhance database query performance, previous literatures affirm

denormalization of databases; yet, database normalization can also increase query performance.

Database normalization improved majority of the queries performed using very large data sets of

router events; however, performance is also dependent on the type of query executed. Queries

performed faster on normalized table if all the necessary data are contained in the normalized

tables. Furthermore, database normalization improves table organization and maintains better

data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing

a database such as additional preprocessing time and extra storage requirements though minimal

in this experiment. Overall, normalization improved query performance and must be considered

as an option when analyzing event logs using relational databases.

v

Acknowledgments

 I would like to say many thanks to my thesis advisor, Dr. Michael Grimaila, for his

unwavering support, mentorship, and patience throughout many months school and research

effort. I would also like to thank Dr. Robert Mills and LtCol Brent Langhals for their guidance

and support. I would also like to send my appreciation to the Information Resource Management

program faculty and staff. Additionally, I want to acknowledge my fellow students and

classmates for their fellowship and camaraderie.

 Thanks for the support from my friends and family. Most importantly, I would like to

say thank you to my wife for her love, support, and understanding all throughout this process.

She gave me all the strength and encouragement to successfully graduate while taking care of

our newborn son. It has been an awesome and unforgettable experience.

 Smile T. Ludovice

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. ix

List of Tables ...x

List of Equations ... xii

I. Introduction ...1

1.1 Research Motivation ..1
1.2 Problem Statement ...2
1.3 Research Goals ..3
1.4 Research Questions ..3
1.5 Scope, Assumptions, and Limitations ...4
1.6 Thesis Overview ..4

II. Literature Review ...5

2.1 Chapter Overview ..5
2.2 Event Logs ...5

2.2.1 Types of Event Logs and Event Entries ... 6
2.3 Current Standardization Effort ..7

2.3.1 Syslog Protocol .. 7
2.3.2 Common Event Expression (CEE) .. 9

2.4 Purpose of Event Logs ...11
2.5 Log Analysis of Security Incidents and Complexity ...13
2.6 Enhancing Situational Awareness, Information Assurance, and Mission Assurance15

2.6.1 Situational Awareness .. 15
2.6.2 Information Assurance ... 16
2.6.3 Mission Assurance ... 18

2.7 Learning from Event Log Data ..21
2.8 Event Correlation ...22
2.9 Database Normalization...23

2.9.1 Steps in Normalization ... 24
2.9.2 Linking Normalized Tables ... 26

2.10 Data Warehousing ...27
2.11 Summary ..29

III. Methodology ...30

vii

Page

3.1 Overview..30
3.2 Hardware and Database Configuration ..30
3.3 Overview of Steps in Normalization and Query Performance Analysis31
3.4 Loading Event Logs and Table Normalization ..32

3.4.1 Parsing Event Logs .. 32
3.4.2 Table Normalization with Index Table .. 36
3.4.3 Table Normalization with Associative Tables ... 37

3.5 Event Log Database Queries ...39
3.6 Runtime Comparison of Normalized and Non-normalized Event Logs44

3.6.1 Statistical Analysis ... 45
3.6.2 Preprocessing and Disk Space Requirements .. 45

3.7 Summary ..47

IV. Results..48

4.1 Overview..48
4.2 Test Statistics Results ..48
4.3 Query Performance Statistics ..52
4.4 Preprocessing of Normalized Tables ...61

4.4.1 Preprocessing Time .. 61
4.4.2 Disk Space Requirement .. 62

4.5 Statistical Query Results ..64
4.6 Summary ..64

V. Conclusion and Recommendations ..65

Chapter Overview ..65
Conclusions of Research..65
Significance of Research ...66
Recommendations for Action ..66
Recommendations for Future Research ...68

APPENDIX A ..69

APPENDIX B ..70

APPENDIX C ..71

APPENDIX D ..118

APPENDIX E ..121

APPENDIX F...122

APPENDIX G ..123

viii

Page

APPENDIX H ..124

APPENDIX I ...127

APPENDIX J ...128

APPENDIX K ..129

APPENDIX L ..131

APPENDIX M ...147

APPENDIX N ..150

APPENDIX O ..152

APPENDIX P...156

APPENDIX Q ..161

APPENDIX R ..163

APPENDIX S...165

APPENDIX T ..169

APPENDIX U ..172

APPENDIX V ..179

Bibliography ..184

ix

List of Figures

 Page

Figure 1: CEE Architecture and Components ..9

Figure 2: Priority for Collecting Logs ..12

Figure 3: Threat Agents Yearly Trend by Percentage ..14

Figure 4: Six Steps in Normalization ..27

Figure 5: Example of Mapping Tables with an Associative Entity ..28

Figure 6: Structured and Unstructured Segments of a Cisco Router Log33

Figure 7: Sequence of File Executions ...36

Figure 8: Visual Depiction of Normalized the Tables ..37

Figure 9: Table Structures of the Normalized Tables ...38

Figure 10: Table Structures of the Associative Tables ...38

Figure 11: Example of Mapping the TBaseName_Link Associative Entity39

x

List of Tables

 Page

Table 1: Types of Event Logs ...7

Table 2: Core Fields ..11

Table 3: Description of Files ...37

Table 4: Query Numbers and Purpose ..42

Table 5: SQL Queries ...43

Table 6: Group Statistics ...49

Table 7: Independent Samples Test ..51

Table 8: Q1 Statistics ..52

Table 9: Q2 Statistics ..53

Table 10: Q3 Statistics ..53

Table 11: Q4 Statistics ..54

Table 12: Q5 Statistics ..54

Table 13: Q6 Statistics ..55

Table 14: Q7 Statistics ..55

Table 15: Q8 Statistics ..56

Table 16: Q9 Statistics ..56

Table 17: Q10 Statistics ..57

Table 18: Q11 Statistics ..57

Table 19: Q12 Statistics ...58

Table 20: Q13 Statistics ..59

Table 21: Q14 Statistics ..59

xi

Page

Table 22: Q15 Statistics ..60

Table 23: Types of Event Logs ..62

Table 24: Example Landscape Table ..63

xii

List of Equations

 Page

Equation 1 ... 46

Equation 2 ... 46

Equation 3 ... 46

Equation 4 ... 46

1

ANALYSIS OF THE IMPACT OF DATA NORMALIZATION ON CYBER EVENT
CORRELATION QUERY PERFORMANCE

I. Introduction

1.1 Research Motivation

Virtually all modern organizations depend on Information and Communication

technologies (ICT), collectively called “cyberspace”, to accomplish their core mission processes.

The United States (US) Department of Defense (DoD) uses cyberspace to conduct all aspects of

military operations. The United States Air Force (USAF) is tasked to support the DoD

cyberspace effort and provides a wide variety of cyber capabilities to the Joint Force Commander

(JFC) (Donley & Schwartz, 2009). A critical capability required in the operation of cyberspace

is the ability to maintain situational awareness of the status of the infrastructure elements (e.g.,

routers, intrusion detection systems, intrusion prevention systems, firewalls, VPNs, switches,

desktop systems, servers) that comprise cyberspace. Event logs from cyber devices can yield

significant information, and when properly stored, processed, and analyzed can provide timely

situational awareness about the state of the cyber infrastructure. In addition, the ability to

monitor cyber devices across multiple locations provides the ability to identify distributed attacks

that may be missed when only viewing event logs from a single geographic location (Grimaila et

al., 2011).

In cyberspace, situational awareness requires the ability to sense, understand the sensed

data, and use it to determine future actions (Okolica et al., 2009). Cyberspace is an attractive

unconventional domain for many nation states, terrorists, and hackers; as such, mission

assurance in cyberspace is vital. For this reason, data gathered from event logs supports

Information Assurance and Mission Assurance. Mission Assurance is critical to military

strategies because it links several risk management programs including Information Assurance to

2

assure mission success (DoDD, 2010, p.19). Recent empirical studies have shown organizations

are beginning to realize the importance of event logs to diagnose error and identify malicious

activities (Shenk, 2009; Shenk, 2010). While the number of organizations with network event

log database servers has steadily grown in the past few years, the top two reported challenges in

exploiting the value of event logs are “Searching through Data” and “Analysis and Reports”

(Shenk, 2010, p. 5). Difficulties in the implementation and maintenance of an event log analysis

capability cause many organizations to under utilize their existing event logs (Baker et al., 2011).

The USAF is not impervious to these log management challenges. Each day, millions of events

are generated in USAF networks and are transported to centralized log servers where they are

stored, processed, and analyzed to extract actionable information. Analysis methods must be

carefully chosen as the number of stored events continues to grow monotonically. To exacerbate

the situation, there is no standard for the storage of event logs, which explicitly enumerates all of

the data elements present in event log that makes storage and analysis less efficient.

1.2 Problem Statement

 In order to maintain situational awareness of the network, everyday USAF organizations

must collect, transport, store, process, and analyze millions of events generated by cyber devices

with limited resources. Analyzing millions of event logs can be cumbersome, inefficient, and

resource intensive (Myers, 2010). For historical and intensive analysis, event logs are captured

and stored in relational databases. Log analysts can then use database queries to conduct event

correlation and search for actionable information. The logs must be analyzed in a timely manner

and archived accordingly to save disk space. The efficient creation, storage, processing, and

dissemination of log events are essential. Currently, the USAF employs commercial log analysis

tools, which require large yearly licensing fees. However, proper Information Assurance

3

requires the validation and verification of the integrity of results generated by a commercial log

analysis tool. To this end, organizations can use a relational database to collect and analyze

event log data to provide the ability to validate results generated by commercial tools without

paying additional licensing fees.

1.3 Research Goals

The primary goal of this research is to determine the impact of database normalization on

database query performance in the context of analyzing events logs generated by routers in

USAF networks. A study will be conducted to compare query performance between a non-

normalized database and a normalized database containing the same data for a set of

representative simple and complex queries that would typically be conducted by network

security personnel. The secondary objective of this research is to provide recommendations on

when normalization should be used based upon tradeoffs in time, storage space, and query

performance.

1.4 Research Questions

There are three primary research questions addressed in this thesis:

1) What standards exist for the generation, transport, storage, and analysis of event log

data for security analysis?

2) How does database normalization impact query performance when using very large

data sets (over 30 million) of router events?

3) What are the tradeoffs between using a normalized versus non-normalized database in

terms of preprocessing time, query performance, storage requirements, and database

consistency?

4

1.5 Scope, Assumptions, and Limitations

The scope of this research is limited to the analysis of router event logs provided

collected in the Integrated Network Operations and Security Center West (INOSC-W) network

from October 2010 to March 2011. A limitation of this work is that it deals only with router

event logs, which is just one of many types of cyber event logs. Another limitation of the study

is that it uses to a fixed number of events during the analysis. This resulted from a delay in

developing and implementing the normalized database and queries. It is believed that increasing

or decreasing the number of events in the database could yield dramatically different results.

1.6 Thesis Overview

This chapter describes the goals of this research and motivates the need for understanding

how query performance is impacted by database normalization. Chapter 2 reviews background

literature in the areas of event log management, event correlation, and the technologies being

used to conduct the research. Chapter 3 presents the experimental design and the methodology

used for conducting analysis of that design. Chapter 4 describes the results of the experiment

and provides an analysis of those results. Finally, Chapter 5 presents the conclusions of the

research, recommendation for action, and recommendations on future research.

5

II. Literature Review

2.1 Chapter Overview

 In this chapter, the literature relevant to the research objective will be reviewed.

Specifically, the subject of event logs and event correlation will be explored, and a review of

database performance will be covered.

2.2 Event Logs

 Event logs also known as audit trails, log files, audit logs, data logs are text streams

recorded from information systems that contain a combination of the following data: timestamp,

event number, type, source, destination, user identification, and message of the event that

occurred (MITRE, 2010a; MITRE, 2010b). Initially, event logs were used as an industrial tool

for monitoring, troubleshooting, and maintenance of machines. It was a source of information to

diagnose internal technical issues without much added benefit for the enterprise network and

organization as a whole (Sah, 2002). In 1973, the DoD issued an Automatic Data Processing

(ADP) Security Manual specifically for protecting classified systems which required

maintenance of audit log or file that records the historical use of ADP systems; this allowed

administrators to regularly inspect system activities (Department of Defense, 1973). A 1980

technical report began to considered computer logs as a tool to monitor and audit security

incidents (Anderson, 1980). During the same period, event correlations in combination with

other techniques were used in artificial intelligence. Today, organizations value event logs for

more than just a passive diagnostic tool; it is a security and an operational asset (Shenk, 2010).

The advances in computer technology, techniques, and the amount of computer logs that can be

collected presents a prime opportunity to analyze and learn from multiple event logs with

millions of data using an effective and efficient methodology.

6

 Essentially, there is no agreed upon format or industry standard for event logs as seen on

the examples below, which makes it more difficult to analyze (MITRE, 2010). There are some

similarities in the type of data however, for the most part each device or manufacturer has its

own format and type of fields in their event logs.

Example of Cisco of event log (Cisco Understanding, 2011)

*May 1 22:12:13.243: %SEC-6-IPACCESSLOGP: list ACL-IPv4-E0/0-IN permitted
 tcp 192.168.1.3(1024) -> 192.168.2.1(22), 1 packet
*May 1 22:17:16.647: %SEC-6-IPACCESSLOGP: list ACL-IPv4-E0/0-IN permitted
 tcp 192.168.1.3(1024) -> 192.168.2.1(22), 9 packets

*May 3 19:08:23.027: %IPV6-6-ACCESSLOGP: list ACL-IPv6-E0/0-IN/10 permitted
 tcp 2001:DB8::3(1028) (Ethernet0/0 000e.9b5a.9839) -> 2001:DB8:1000::1(22), 1 packet
*May 3 19:13:32.619: %IPV6-6-ACCESSLOGP: list ACL-IPv6-E0/0-IN/10 permitted
 tcp 2001:DB8::3(1028) (Ethernet0/0 000e.9b5a.9839) -> 2001:DB8:1000::1(22), 9 packets

Example of Microsoft Windows Firewall (Microsoft, 2011)

2005-04-11 08:05:57 DROP UDP 123.45.678.90 123.456.78.255 137 137 78 - - - - - - - RECEIVE
2005-04-11 08:05:57 DROP UDP 123.45.678.90 255.255.255.255 1631 2234 37 - - - - - - - RECEIVE
2005-04-11 08:05:58 OPEN UDP 123.45.678.90 123.456.78.90 500 500 - - - - - - - - -
2005-04-11 08:05:58 DROP UDP 123.45.678.90 123.456.78.255 138 138 299 - - - - - - - RECEIVE
2005-04-11 08:06:02 CLOSE UDP 123.45.678.90 123.456.78.90 1027 53 - - - - - - - - -
2005-04-11 08:06:02 CLOSE UDP 123.45.678.90 123.456.78.90 137 137 - - - - - - - - -
2005-04-11 08:06:05 DROP UDP 0.0.0.0 255.255.255.255 68 67 328 - - - - - - - RECEIVE

Example of Blue Coat Firewall event log (Blue Coat, 2011)

2011-01-18 02:32:22+07:00ICT "Access Log (main): Unable to connect to remote server for log
uploading" 0 E0008:1 ../alog_facility_impl.cpp:2726
2011-01-18 02:33:21+07:00ICT "Access Log FTP (main): Connecting to primary 192.168.4.66 server
192.168.4.66:21." 0 E0000:96 ../alog_ftp_client.cpp:110
2011-01-18 02:33:39+07:00ICT "Snapshot sysinfo_stats_2min has fetched /sysinfo-stats" 0
2D0006:96 ../snapshot_worker.cpp:214
2011-01-18 02:33:39+07:00ICT "Snapshot CPU_Monitor has fetched
/Diagnostics/CPU_Monitor/Statistics/Advanced" 0 2D0006:96 ../snapshot_worker.cpp:214
2011-01-18 02:34:36+07:00ICT "Access Log FTP (main): Couldn't connect control socket to primary
server 192.168.4.66" 3C E000A:1 ../alog_ftp_client.cpp:155

 2.2.1 Types of Event Logs and Event Entries

 There are several types of cyber event logs including, computers, servers, routers,

firewalls, and intrusion detection systems. Each device can potentially capture and record events

7

into a file or log. Table 1 lists the different types of event logs, examples, and types of log

entries and functions.

Table 1. Types of Event Logs (MITRE, 2010; Hucaby, 2005; Microsoft Types, 2011)

Common Types of Event Logs Examples Log Entry Types/Functions

Computer Personal computers, portable
devices

Application, Security, System

Servers Web servers, Email,
Database, Domain

Application, Security, System,
Directory Service, DNS
Server, File Service

Network Layer Devices Routers, Switches Alert, Warning, Error,
Information

Network Security Devices Firewalls, Intrusion
Detection Systems

Allow and Deny Audit,
Protocol usage, Traffic Log

2.3 Current Standardization Effort

 2.3.1 Syslog Protocol

 The creation of the syslog daemon and protocol is largely credited to Eric Allman of

Sendmail and originally described in Request for Comments (RFC) 3164 The Berkley Software

Distribution (BSD) syslog Protocol by the Internet Engineering Task Force (IETF) (Lonvick,

2001). RFC 3164 was categorized for informational purposes but has become the de-facto

standard (Lonvick, 2001). The protocol allowed the transmission of event logs across IP

networks to syslog servers. The simplicity of the protocol allowed programmers to write codes

independently with no strict requirements on the type of source or format of the message.

Simplicity is one of the reasons for its wide acceptance among industry leaders (Lonvick, 2001).

Cisco Systems is one of the companies that have leniently adopted the syslog protocol.

8

However, the flexibility of the protocol resulted in divergent formats that make correlation and

analysis challenging for administrators.

 The Syslog Protocol RFC 5424, which superseded RFC 3164, is a document in a

Proposed Standard status of the IETF as opposed to informational (Gerhards, 2009). Although

the BSD syslog protocol became a de-facto standard, it was never formalized. Actual industry

implementations have many different variations for every platform (Gerhards, 2009). RFC 5424

provides a foundation for standard syslog format and transport methods using layered

architecture. The three syslog conceptual layers are content, application, and transport. This

research is primarily concerned with the content layer and to some extent the application layer.

The syslog content layer deals with the “information contained in the syslog message”

(Gerhards, 2009, p. 4) while the syslog application layer “handles generation, interpretation,

routing, and storage of syslog message” (Gerhards, 2009, p. 4). Furthermore, the transport layer

in RFC 3164 recommended utilizing user datagram protocol (UDP) port 514 could now use any

transport protocol and port number as long as it does not alter the content. Another addition in

RFC 5424 is a mechanism for structured-data that enable “easily parseable and interpretable data

format” (Gerhards, 2009, p. 15). Some of the challenges when storing, sorting, and querying

event logs are being able to efficiently and accurately parse the different data elements.

Structured-data provides a standard format with vital meta-information in the log message such

as IP addresses or event ID for efficient parsing. In addition to structured information format, it

also permits vendor specific extensions and free-form text. RFC 5424 also provides flexibility to

reformat contents for backwards compatibility with RFC 3164. In general, log messages

compliant to RFC 5424 should be consistent and contain distinct field separations that are easily

parseable.

9

 2.3.2 Common Event Expression (CEE)

 Other organizations such as MITRE, a non-profit entity that receives sponsorships from

government agencies and private enterprises, had also initiated log standardization effort known

as CEE. The goal of CEE’s architecture is to provide a foundation for “standardizing the

creation and interpretation” of event logs particularly from computers and sensors (MITRE,

2010c, p. 4). A similar goal between RFC 5424 and CEE is to make parsing of event logs

simple. Figure 1 shows the CEE architecture and components; the bidirectional arrows represent

the ability not only to generate event logs but also to recreate the events based on the logs.

Figure 1. CEE Architecture and Components (MITRE, 2010c)

Four major components transform an event into a log and vice versa. Common Event Log

Recommendations (CELR) provides recommendations on which events should be recorded and

the type of situations it should be recorded. CEE Dictionary and Taxonomy (CDET) defines the

event terminology such as field names and value types in the dictionary while taxonomy contains

a collection of categories of events that provide common vocabulary and similarity of events.

Common Log Syntax (CLS) describes the representation of the event and event data when it is

produced by the source and processed by the event consumer. Finally, the Common Log

10

Transport (CLT) provides specific guidance for reliable and secure transport of the log. CEE has

identified six core fields, shown in Table 2, that are common to most logs; these are pre-defined

fields to make processing simpler. Each CEE compliant event log must have all the fields

specified. However, there could be cases where one or more fields do not have a value; in such

cases, the field should represent a null value (Heinbockel, 2011). In Cisco logs, the ID, time,

action, status, and p_sys_id fields are most common while the p_prod_id field is less common.

RFC 5424 and CEE are possible standards that future event logs should comply with to make

generation, transmission, storage, and analysis more efficient.

Table 2. Core Fields (Heinbockel, 2011; Heinbockel & Graves, 2011)

Field Field Type Description

id string Event ID

time timestamp Event start time

action tag Primary action of the event

status tag Result of the event action

p_sys_id string ID of the producing system

p_prod_id string ID of the producing product

11

2.4 Purpose of Event Logs

The National Institute of Standards and Technology (NIST), underscore the importance

of event logs when investigating security incidents, fraud, policy breach, and auditing just to

name a few (Kent & Souppaya, 2006). Federal law and regulations such as the Federal

Information Security Management Act of 2002 (FISMA), the Health Insurance Portability and

Accountability Act of 1996 (HIPAA), the Sarbanes-Oxley Act of 2002 (SOX), the Gramm-

Leach-Bliley Act (GLBA), and the Payment Card Industry Data Security Standard (PCI DSS)

require organizations to “store and analyze certain logs” few (Kent & Souppaya, 2006, p. 2-11).

Furthermore, in the private sector, a 2006 report from a key organization in information security

underlines five essential log reports: failed attempts to gain access through existing accounts,

failed file access attempts, unauthorized changes, systems that are most vulnerable to attack, and

suspicious or unauthorized network traffic patterns (Brenton, Bird, & Ranum, 2006). In a 2010

survey shown in Figure 2 of over 500 organizations of different sizes and information technology

budgets, showed that 63% would like to use logs to “Detect/prevent unauthorized access and

insider abuse” as their top priority. The second highest objectives which are all statistically tied

at 40% include, “Meet regulatory requirements”, “Forensic analysis and correlation”, and

“Ensure Regulatory Compliance” (Shenk, 2010, p. 4). These reports show that network security

and compliance are top priorities for most organizations and they believe that event logs can be a

very useful tool for this. In fact, an overwhelming number of the respondents (91%) suggest that

logs were “useful or very useful for tracking suspicious behavior”. Regardless of this optimistic

view of event logs’ usefulness, many still believe that searching and analyzing logs can be better.

Thirty-six percent believe that “Searching through data” is cumbersome and 32% view “Analysis

12

and reports (and ability to interpret results)” as very challenging, both ranking as the top

obstacles (Shenk, 2010, p. 4).

Figure 2. Priority for Collecting Logs (Shenk, 2010, p. 4)

 There are several propriety solutions and services for event log management and analysis

being offered presently. According to a review, leading hardware and software solutions for log

management are NitroSecurity NitroView, ArcSight Logger, and LogRhythm, which varies in

prices starting from $20,000 up to $40,000 for an initial price (Grimes, 2010). The pros and cons

vary and it depends on the organization’s goal and structure, which one fits them better. The

USAF is currently using ArcSight as its log management tool and the licensing price could cost

millions of dollars. There should be alternatives that are less expensive yet simple tools for

analyzing event logs.

13

2.5 Log Analysis of Security Incidents and Complexity

In a 2010 joint study by the U.S. Secret Service (USSS) and Verizon involving 761

investigated reports of network security breaches, found that 3.8 million known records were

compromised (Baker et al., 2011). The study showed an exponential increase on the number of

breaches based on previous years although there was a significant drop in the number of

compromised data. The study could not conclusively pinpoint the reasons for this phenomenon.

Figure 3 suggest that external threat had steadily increased according to the Verizon data and it

significantly increased according to the USSS data from 2007 to 2010. Organized criminals

mostly perpetrated the external threats based on the report. Additionally, investigators found that

the number of unknown external attacks decreased, mostly in part, because larger organizations

who managed their event logs adequately allowed the authorities to identify and prosecute the

perpetrators. On the other hand, smaller companies who did not or could not keep sufficient log

data were unsuccessful in identifying the attackers (Baker et al., 2011). Events logs added

another tool that standard forensic methods would have missed. This report highlighted the

importance of external security threats, why event logs are important in mitigating these risks,

and potentially learning new information from the logs.

14

Figure 3. Threat Agents Yearly Trend by Percentage (Baker et al., 2011)

 Each device on the network can produce hundreds of thousands of audit logs a day. A

large organization with several firewalls, routers, and servers can easily generate hundreds of

gigabytes a day. Sifting through this enormous amount of data can be a daunting task this is why

an earlier study found that over 60% of the respondents consider either “Searching through data”

or “Analysis and Reports” as the first or second most challenging tasks for them (Shenk, 2010, p.

4). The NIST Guide to Computer Security Log Management enumerated many of the challenges

in log management; the three main categories are log generation and storage, log protection, and

log analysis (Kent, & Souppaya, 2006). This research focuses on log analysis; however, the

techniques also address some aspects of the other two categories. One of the main challenges in

log analysis for administrators is that they do not have the proper tools to efficiently analyze

security incidents and threats. Moreover, this additional task is not the most glamorous job, and

administrators would rather perform other maintenance and troubleshooting duties (Kent, &

15

Souppaya, 2006). A simple and efficient process should make log analysis quick and easy.

Additionally, when more logs are accumulated the more complicated analysis becomes, thus

necessitating better methods (Kent, & Souppaya, 2006). Many of the current log analysis

techniques are insufficient such as using predefined algorithms, frequent patterns, and algorithms

that ignore patterns other than event types (Vaarandi, 2002). Based on the studies and surveys

discussed previously, organizations have ample reasons to invest in event logs to improve

information security, decision-making, and more importantly mission accomplishment.

2.6 Enhancing Situational Awareness, Information Assurance, and Mission Assurance

 2.6.1 Situational Awareness

 Situational awareness is “the perception of elements in the environment within a volume

of time and space, the comprehension of their meaning, and the projection of their status in the

near future” according to Endsley (1995, p. 1; Okolica et al., 2009, p. 47). A cyber situational

awareness system must be able to sense the situation, interpret the sense data, and predict future

outcome (Okolica et al., 2009, p. 47). To understand the sense data, the system depends on

several types of event logs to construct a known “insider threat” profile, for example (Okolica et

al,. 2009, p. 47). Moreover, in Information Assurance, a process called System Security

Engineering and Assurance (SSEA) involves managing complex interrelations between

engineering, situational awareness, and maintenance (Capitan, 2008). SSEA combines mission

assurance, information assurance, and security through systems engineering concepts (Capitan,

2008, p. 7). Using the systems engineering approach, event logs will provide better situational

awareness hence improving both mission and information assurance. Archiving event logs in

data warehouses could provide long-term use throughout the system’s development life cycle.

There could be several situations where more information is needed in the future, management

16

may come up with new questions, and network security personnel will have to retrieve archived

event logs. In each case, proactively searching for valuable knowledge in a stack of logs remains

challenging. Information systems personnel in general, could use built-in reporting templates or

the Top 10 list of well-known security profiles to create an executive summary for upper

management and later build on this report based on management and user feedback (Babbin,

2006, p. 16). There are tools and methods available to create standard and management-level

reports that show the effectiveness of the security policies using event logs (Babbin, 2006, pg.

32). Management normally would require metrics and statistical data when new network

security investments are needed or immediately after a new installation. Event logs can

significantly contribute to management’s cyber situational awareness through information

system reports and feedback. Information Assurance personnel can provide reports to

management on the effectiveness of the organization’s security investment and policies by

utilizing event logs. Event logs when properly utilized contributes to better situational awareness

for the operators, leadership, and upper management.

 2.6.2 Information Assurance

 Information Assurance and information security are similarly defined in the Committee

on National Security Systems (CNSS) National Information Assurance Glossary (2010) and

include the three tenets of information namely confidentiality, integrity, and availability (CIA).

Information Assurance is defined as “measures that protect and defend information and

information systems by ensuring their availability, integrity, authentication, confidentiality, and

non-repudiation. These measures include providing for restoration of information systems by

incorporating protection, detection, and reaction capabilities.” (CNSS, 2010, p. 35) Information

security, likewise, is defined as “the protection of information and information systems from

17

unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide

confidentiality, integrity, and availability.” (CNSS, 2010, p. 37) Both definitions highlight three

tenets of information. In most cases, the value of information as an asset depends upon

maintaining its CIA (Pipkin, 2000, p. 14). Specifically, confidentiality is an Information

Assurance attribute that limits access to those individuals or organizations on a need to know

basis; integrity or accuracy of information guarantees that it is correct and has not been tampered

with; and availability is access to information when and where it is needed (Pipkin, 2000, p. 14).

The value of event logs evolved from being just a passive diagnostic tool to a more

valuable network security and operational asset (Shenk, 2010). Event logs today, can play a

major role in the quality on each of the CIA attributes if manage properly. Confidentiality

requires limiting access to information; event logs can record important information and track

timestamps, usernames, IP addresses, port numbers, protocols, and whether access was permitted

or denied. This information, if properly managed, can provide investigators valuable clues if

someone tried to access a resource without proper authority. The integrity of information

depends on two major components: known good source and accuracy of data (Pipkin, 2000, p.

14). Event logs support the first component of integrity by identifying the source such as the

username, IP address, process, and product that produced the information. This is not a

foolproof process; however, it can still provide valuable knowledge. The accuracy of the

information, similarly, can be verified using event logs by recording modifications,

transmissions, and storage of files. Accuracy can also be protected using the “tripwire”

technique by creating and securely storing hash values of critical files. The hash value of each

file is unique; hence, it can then be calculated and compared to the original value in a consistent

manner to detect any unauthorized modifications. The tripwire methodology also produces logs

18

that records important events that can be analyzed for additional information (Tripwire, 2011).

Availability is another attribute of Information Assurance which is arguably the most difficult to

ensure because it involves wide range of resources and most of them may not be under the

control of a single organization (Pipkin, 2000, p. 149). Availability means providing

accessibility and usability of information to authorized personnel wherever and whenever

requested. To maintain a high level of availability, an organization must prevent outages

especially unscheduled interruptions such as long-lasting equipment failures. Network devices

normally produce event logs that warn the administrator of an impending failure. For example,

error messages could be generated stating if a fan is malfunctioning on a critical router. Total

outage and lengthy downtime could be avoided if the hardware is repaired on time. Proper

monitoring of event logs will avoid lengthy downtime. Another concern for information systems

availability is Denial of Service (DOS) attack, which could be both intentional and unintentional.

In a DOS attack, event logs can record the source of attack and assist investigators in finding and

possibly prosecuting the perpetrators. Unintentional DOS attack can also be monitored and

detected in different ways depending on its source.

 2.6.3 Mission Assurance

 The heavy dependence of the United States military on information systems in

accomplishing its goals and objectives makes it vulnerable to attacks from cyberspace. In

today’s modern warfare, cyberspace is an attractive unconventional domain for many nation

states, terrorists, and hackers; as such, mission assurance in cyber domain is vital. Some authors

described cyberspace as the “center of gravity” because of the reliance of mission essential

functions on its capabilities (Jabbour & Mucio, 2011, pg. 62). Mission assurance is critical to

military strategies because it links several risk management programs including Information

19

Assurance (DoDD, 2010, p.19). As discussed previously, proper event log management can lead

to effective Information Assurance and therefore enhance mission assurance.

 There are several definitions for mission assurance, which varies upon on the individual

or organization’s perspective. One definition by Alberts and Dorofee (2005, pg. 23) from a

Carnegie Mellon University, defines mission assurance as “establishing a reasonable degree of

confidence in mission success.” According to the authors, it is not an on/off binary aspect, but

rather, a continuous attribute that range from guaranteed failure to guaranteed success. The DoD

defines Mission Assurance as “a process to ensure that assigned tasks or duties can be performed

in accordance with the intended purpose or plan. It is a summation of the activities and measures

taken to ensure that required capabilities and all supporting infrastructures are available to the

Department of Defense to carry out the National Military Strategy.” (DoDD, 2010, p.19)

 Some authors suggest that traditional engineering focuses more on building complex

systems that perform in a tolerant cyber environment; however, these systems fail when

operating in a hostile environment (Jabbour & Mucio, 2011, pg. 63). Yet, this is the type of

cyber warfare domain where the military is expected to operate. A reliable system does not

equal a secure system especially in a hostile environment (Jabbour & Mucio, 2011, pg. 64). Risk

is considered the loss of any of the three attributes of Information Assurance, namely,

confidentiality, integrity, and availability of information (CNSS, 2010, p. 61); it is also the

intersection of threat, vulnerability, and resource. Jabbour and Mucio (2011, p. 64) suggest that

threat and vulnerability are dependent variables hence “there is no threat without vulnerability.”

Cyber security should therefore focus more on the vulnerabilities rather than the threat (Jabbour

& Mucio, 2011, pg. 64). This may sound like a noble idea, however, vulnerabilities in software

with millions of codes and hardware from thousands of manufacturers are difficult to avoid.

20

Nevertheless, developers have more control over limiting vulnerabilities on their products than

the threats coming from hackers, terrorists, nation states, and criminals. Moreover, event logs

can be useful both in limiting vulnerabilities and in detecting threats.

 It is important to record and document events throughout the life cycle of information

systems in order to maintain mission assurance. In today’s military operations, most missions

depend on cyberspace to attain a level of confidence for a successful mission. Jabbour and

Mucio (2011) proposed 13 rules for building and designing future secure systems and a four-step

methodology for already existing systems. In the 13 rules they proposed, event logs could be

very useful for generation, processing, storage, communication, consumption, and destruction.

Each stage could produce substantial amount of logs for documentation and analysis that could

enhance system design, operation, and maintenance. The four-step stopgap methodology for

existing systems includes prioritization, mission mapping, vulnerability assessment, mitigation,

and an optional red teaming. Likewise, all these steps would benefit from proper use of event

logs particularly in mission mapping, vulnerability assessment, and threat mitigation. Mission

mapping identifies the military missions dependent on the functionality of cyber processes as

well as their internal and external interactions with other processes (Jabbour & Mucio, 2011, pg

69). More specifically, event logs can be valuable in two particular steps, identifying “all data

communication among cyber processes” and documenting “the data format, speed, and protocol

for each data communication”. In vulnerability assessment, event logs perform a major role

during identification, documentation, and estimation of vulnerabilities. Additionally, event logs

are also valuable in threat mitigation during threat identification and intrusion detection.

 Event logs can be very instrumental tools to enhancing situational awareness, Information

Assurance, and mission assurance. However, one must realize that raw event logs are simply

21

data generated by information systems. At present, system managers still need to collect,

correlate, and analyze these logs to get meaningful information from them and possibly gain

knowledge. Understanding how raw log data can turn into actionable information and useful

knowledge is essential to analyzing event logs.

2.7 Learning from Event Log Data

 Computer systems use event logs to communicate to the users. Presently however, raw

log data are still difficult to comprehend. Computers are still far from communicating system

events in non-technical human understandable form. Event logs currently produced by most

computers are nothing more than data. Davenport and Prusak (2000) defined data as “a set of

discrete, objective facts about events” (p. 2). It is raw numbers, facts, and “a structured records

of transactions” (Davenport & Prusak, 2000, p. 2; Alavi & Leidner, 2001). Computer logs by

itself do not mean anything unless someone adds context to it. When context and structure is

combined with facts, it turns into information (Tuomi, 2000). Information gathered from a

single event log or even a collection of logs may still be insufficient to form a broader situational

awareness of an organization’s network. When a person or an analyst personally processes the

information in his or her mind using concepts, procedures, understandings, experiences,

judgments and given meaning then it becomes knowledge (Alavi & Leidner, 2001; Davenport &

Prusak, 2000; Tuomi, 2000). Therefore, to effectively analyze these event logs and form

actionable knowledge one should be mindful of these elements and their distinctions.

Consequently, organizations should realize that current log analysis tools and technologies could

only achieve so much. At some point personalized human knowledge and analysis of data that is

beyond any computer or analytical technique becomes critical. Analyst must understand the

organization’s mission in order to gain a better understanding of the log data. Organizations who

22

over emphasize and set excessive expectations from these tools often leads disappointment

(Davenport & Prusak, 2000; Feld & Stoddard, 2004; Van den Hoven, 2001). This could a reason

why majority of organizations in the surveys, who after millions of dollars and years of investing

in log management systems, still find analyzing data very challenging. Despite these challenges,

information technology systems are still critical enablers in managing data and information to

most organizations (Alavi & Leidner, 2001).

2.8 Event Correlation

 Event correlation is the process of discovering the relationship between events for the

purpose of finding the source of a fault and sorting out unnecessary information (Grimaila, et al.,

2011; Hasan, Sugla, & Viswanathan, 1999). It is dependent on event-based management model

were the system translate relevant information into form of events (Lee, 1995). Event correlators

had become popular tools for managing complex enterprise network (Jakobson, Weissman,

Brenner, Lafond, & Matheus, 2000). In the past, the main function of audit logs data

communications network was for investigating faults and outages (Jakobson et al., 2000). A

large organization would normally have several hundreds if not thousands of network devices

that generates event logs. Event correlation can potentially make it simpler to digest all the

different information. At present, log correlation can be used in tracing and discovering network

security incidents. This technique in addition to case-based reasoning had also been proposed to

assist in battlefield management, specifically in military planning and operations where

situations are often fluid (Lee, 1995). In large networks were faulty equipments can produce

large amount of logs in a short amount of time flooding the network, in these conditions event

correlations can filter the data (Vaarandi, 2002). Obviously, event correlation provides

23

administrator with better knowledge of the status of an organization’s network (Grimaila, et al.,

2011).

2.9 Database Normalization

 One of the fundamental first steps in learning and mining for information in databases is

data normalization (Ogasawara, 2010). It is a process of refining the raw data sequentially into

well-structured relations devoid of all the anomalies (Hoffer et al., 2009; Sanders, & Shin, 2001).

According to Hoffer et al. (2009), these are the main reasons for normalization:

 1. Minimize data redundancy, thereby avoiding anomalies and conserving storage space.
 2. Simplify the enforcement of referential integrity constraints
 3. Make it easier to maintain data
 4. Provide a better design that is an improved representation of the real world and a

stronger basis for future growth. (p. 226)

Event logs are collected non-normalized without any well-defined structures, therefore

redundancy and anomalies exist making analysis less efficient and more complex. This also

adds to the difficulty of maintaining data. The lack of structure and standardization make mining

and correlating data more challenging (MITRE, 2010c). Normalization takes several steps when

filtering all the dependencies until all the anomalies are gone (see Figure 4).

 Nonetheless, there are some drawbacks to normalization. Firstly, writing the queries will

be more complex thus reducing the ease of use (Sanders, & Shin, 2001). Typically, whenever

the number of tables increases, so as the number of joins and possibly the number of sub-queries,

this makes queries more complicated. Secondly, normalization reduces system performance

because of added query processing (Hoffer et al., 2009; Lee, 1995; Sanders, & Shin, 2001;

Westland, 1992). This could be particularly true when the amount of data stored and being

retrieved is relatively small (Westland, 1992). Hoffer et al., (2009) cited a report by William H.

Inmon, which showed that fully normalized tables performed slower. However, the highest

24

number of rows contained in each of the eight normalized tables in the study was only 50,000. If

the amount of data being queried is rather large, it could be that query performance of

normalized table will outperform non-normalized. Smaller normalized tables can be queried

using SQL joins. According to Plivna (2008) databases are designed to handle joins very

efficiently. Relational databases are also known for its power when processing multiple tables

(Hoffer et al., 2009) such as in SQL queries.

 Some database administrators may prefer the denormalized form. Denormalization is

defined as “the process of transforming normalized relations into unnormalized physical record

specifications” (Hoffer et al., 2009, p. 266). The idea is to reduce the number of tables and

consequently the number of joins when writing queries. This research does not consider

denormalization because it can only optimize certain queries but sacrifices the performance of

others (Hoffer et al., 2009). Additionally, if for some reason the most frequently used query

changes, then the tables will have to be denormalized again or the performance advantage will no

longer apply. Further, developing or finding the most frequently used queries for event logs now

can be short sighted as this list can change whenever new demands or threats come up which will

make database maintenance complex and time consuming.

 2.9.1 Steps in Normalization

 There are seven identified forms of normalization: first normal form (1NF), second

normal form (2NF), third normal form (3NF), Boyce-Codd normal form (BCNF), and fourth

normal form (4NF) as shown in Figure 4. The fifth normal form (5NF) and Domain-Key

Normal Form (DKNF) are mentioned but not discussed in this paper. The goal in each step is to

remove anomalies and dependencies. The first step is to remove multivalued attributes in a table

in order to be considered in 1NF. Each cell in the table should only have one value and there are

25

no duplicate rows. To move into the 2NF, a table must not have any partial dependencies.

Partial functional dependency is “a functional dependency in which one or more nonkey

attributes are functionally dependent on part (but not all) of the primary key” (Hoffer et al., 2009,

p. 233). Each nonkey attribute must be fully dependent on one primary key. The next step is

3NF; where in all transitive dependencies must be removed. A transitive dependency is a

functional dependency of attributes to another attribute that is not the primary key. A quicker

way to achieve 3NF is to create tables based on functional dependencies of determinants (Hoffer

et al., 2009). After a table is in 3NF anomalies can still exist when there is more than one

candidate key. The BCNF proposed by R. F. Boyce and E. F. Codd, makes certain that every

determinant in the table is a candidate key. A determinant is an attribute that other attributes are

functionally dependent on. For example, a person’s name, address, and birthdate are

functionally dependent on the Social Security Number. A candidate key is an attribute that is

unique and nonredundant (Hoffer et al., 2009). The final normalization step discussed in this

paper is the 4NF. This phase ensures that there are no multivalued dependencies in a table

(Wyllys, 2010). To comply with this step, the attributes with multivalued dependencies should

be stored in separate tables; otherwise, the table will contain redundant information that can

cause anomalies and confusion. Some authors consider tables in 3NF to be satisfactory for

databases used in most practical applications (Hoffer et al., 2009, p. 651) while Wyllys (2010)

consider 4NF sufficient in practice. The last two normalization steps, 5NF and DKNF, are not

discussed, mainly because the 5NF is difficult to define and has little practical value (Hoffer et

al., 2009; Wyllys, 2010) while DKNF has a simple definition but minimal practical significance

(Hoffer et al., 2009). In summary, when creating tables “strive for single-theme” to achieve

normalization and avoid anomalies (Wyllys, 2010).

26

Figure 4. Six Steps in Normalization (Hoffer et al., 2009, p. 227)

 2.9.2 Linking Normalized Tables

 Normalized tables may need to be linked together to identify applicable associations and

reduce the complexity of queries. One way of doing this is to create an additional table or an

associative entity. This entity is also known as an associative relation (Hoffer et al., 2009).

Often times, an associative entity is used when the relationship between two entities are many-

to-many (M:N) (see Figure 5a). After the associative table is created, the database designer

needs to decide if an identifier needs to be assigned. The identifier has to uniquely identify the

each instance in the table. If an identifier is not assigned, then the foreign keys, which are the

primary keys from the two tables, become the identifier (see Figure 5b) (Hoffer et al., 2009).

27

(a) Two entities with M:N relationship

(b) Three resulting tables from the two entities with M:N relationship

Figure 5. Example of Mapping Tables with an Associative Entity (Hoffer et al., 2009).

2.10 Data Warehousing

Normalization and denormalization strategies are normally found in data warehousing

depending on the design chosen. Data warehouse is a subject-oriented, integrated, time-variant,

non-updatable collection of data used in support of management decision-making processes

(Hoffer et al., 2009). It contains informational data, derived from operational data, which can

then support planning and forecasting (Dunham, 2003). The main driver for data warehousing

development was the discovery of the difference between operational systems and informational

systems (Hoffer et al., 2009). Organizations extract meaning and information to enhance

Composite primary key as an identifier

28

decision-making and performance from informational assets (Hoffer et al., 2009). Since the

early 1990s, data warehousing techniques have been used to find and learn new information from

a collection of data. Data warehouse has become significant because it is a vital tool in

integrated management of decision support data in organizations (Shin, 2003). Organizations

use it in planning, target marketing, decision-making, data analysis, and customer services (Shin,

2003). Organizations that use this tool appropriately will have a critical knowledge-based

competitive advantage over competitors (Shin, 2003). One of the challenges in data

warehousing is its complexity because it pulls data from different sources like transactional and

operational databases, external data, and others. Improving system throughput and response are

major challenges developers should address (Shin, 2003). Databases designed for data

warehousing should be less concerned with update consistency compared to operational real-

time databases (Inmon, 2000).

 Data mining tools and techniques have been used in data warehousing to improve

decision-making and develop solutions for specific problems. Analysts have constructed

predictive models using warehouse data to forecast the outcomes of different decision

alternatives (Apte, Pednault, & Smyth, 2002). Data mining is knowledge discovery using a

sophisticated blend of techniques from traditional statistics, artificial intelligence, and computer

graphics (Westland, 1992). Data mining is the process of finding hidden information in a

database; it is an exploratory data analysis, data driven discovery, and deductive learning

(Dunham, 2003). The three goals of data mining are explanatory, to explain some observed

event or condition; confirmatory, to confirm a hypothesis; and exploratory, to analyze data for

new or unexpected relationships (Hoffer et al., 2009).

29

2.11 Summary

 The two prevailing event log standards today are, MITRE’s CEE and the Syslog protocol

(RFC 5424). Regulatory compliance and network security issues have increased the importance

of event logs to many organizations. Log analysis still remain complex due to lack of industry

standards, lack of simple and efficient analysis methods to process numerous amount of logs

generated daily. Event logs can provide cyber situational awareness to management and other

network users in the organization. Proper event log utilization through information systems

monitoring and threat detection enhances mission assurance and information assurance.

Database analysis of event logs is only one of the tools in the information system security

toolbox that is still limited and dependent on the human operator’s understanding and knowledge

of the entire situation. One way to increase understanding of a situation is to correlate different

events wherein logs contribute critical data for analysis. A relational database can be used as a

tool for log analysis; a proper methodology for this process will be discussed in the next chapter.

30

III. Methodology

3.1 Overview

 This research utilized an experimental methodology, which consists of two major parts.

The first part involves loading the router event logs into the database and normalizing the

database into single-themed tables. The database was normalized based on functional themes or

relevance of the data such as the Basename, ReportIP, DestinationPort, and others. Once

normalized, the second part consists of measuring the query runtimes on both normalized and

non-normalized configuration. Two sets of similar queries were developed one for normalized

and the other for non-normalized. The differences in runtimes were recorded and statistically

measured. The main goal is to measure if there are any differences in query runtimes between

normalized and non-normalized router log data. The differences between the performances were

calculated using a t-test of independent samples. The chosen methodology was designed to

specifically fulfill the research goals and answer the research question described in Chapter 1,

which are briefly revisited in the next section. Additionally, the database used for this

experiment is not for operational real-time transactions that need to be consistently updated

although it can be for data mining and warehousing purposes. The experiment’s focus is on the

structuring of data for efficient query processing. Therefore, ensuring well-structured relations

and complete normalization were not the main concerns.

3.2 Hardware and Database Configuration

 The computer setup consists of database server running on a Hewlett-Packard Compaq

8710w with Intel Pentium III Xenon 2.6 gigahertz processor, 150 gigabytes of hard drive space,

and 4 gigabytes of random access memory. The operating system is Windows XP Professional

31

Service Pack 3. The database platform is Oracle Database 10g Enterprise Edition Release

10.2.0.1 using only the default settings with no additional performance tuning involved.

3.3 Overview of Steps in Normalization and Query Performance Analysis

 This research used approximately 30 million records of actual unprocessed USAF-

network router event logs. In order to load the logs into a database and query their contents

several steps were taken. This process was not based on any known standard approach for event

log normalization; rather, the steps were developed using systematic experimental process as

well as trial and error. The steps are briefly described here.

1. Parse the unprocessed network event logs in text format into comma-separated values

(CSV) format.

2. Parsed event logs were exported into a flat non-normalized table.

3. Eight normalized tables were created based on the log data context ensuring that each

table only has a single theme.

4. The eight normalized tables were populated using the data from the non-normalized

table.

5. Eight associative tables that link the normalized tables together as well as to the flat

non-normalized table were created.

6. The associative link tables were populated using the primary keys of the flat non-

normalized table and the respective normalized table creating a composite primary

key.

7. A set of 15 queries were developed based on Information Assurance principles,

network security best practices, and general statistical information about the event

logs.

32

8. The queries’ runtime performance on both normalized and non-normalized sets of

tables were recorded.

9. The differences in runtime performance where analyzed using a t-test of independent

samples.

3.4 Loading Event Logs and Table Normalization

 The original text format of event logs can be unreadable to most network analyst;

therefore, the logs must be partitioned into separate logical classifications according to their

purpose. As described in the previous steps, the logs must be parsed, loaded into the database,

and then finally normalized. The first attempt to normalize the flat table took much longer than

expected and was ultimately unsuccessful. The database table of event logs was consequently

normalized based on functional theme or relevance of the data into eight tables. There are

several reasons for normalizing the table, namely, to remove unnecessary duplication of data,

maintain consistency, and to create well-structured relations (Hoffer et al., 2009).

 3.4.1 Parsing Event Logs

 The Cisco router event logs have two separate portions, structured and unstructured, as

shown in Figure 6; RFC 5424, which is the most recent version of the syslog protocol, refers to a

similar format (Gerhards, R., 2009). The structured portion has a format that remains constant

through all the event logs regardless of the Cisco router device. In contrast, the unstructured

segment contains the free text form of the message. In the structured portion, the first set of date

and time records when the event took place in the log server. The subsequent IP address belongs

to the reporting router. Following this IP address is a router message sequence number. This is a

globally unique number for each router terminal and can range from 000,000,001 to 999,999,999

(Cisco, 2011). Then, the second set of date, time, and time zone are recorded from the reporting

33

Structured
Jan 1 01:03:44 132.35.194.5 233361: Jan 1 01:03:43.815 GMT: %SEC-6-IPACCESSLOGP:

Unstructured
list ingress denied tcp 192.168.1.3(1024) -> 192.168.2.1(22), 9 packets

router. The words preceded by a % sign is the event message type, which in this example, has a

format of “%<facility>-<severity>-<mnemonic>:” (Cisco System Log). Facility codes as well as

mnemonic codes could vary in meaning depending on the device. The severity codes are

described in a table in Appendix A. Finally, the parser also appended the Basename for every

event where the logs came from.

Figure 6. Structured and Unstructured Segments of a Cisco Router Log

 The unstructured part of the event log contains free text message. The format can vary

because of the different designs of hardware and software as well as the various types of network

traffic (Cisco IPhelp, Understanding, 2011). In Figure 6, it starts with the type of Access Control

List (ACL) followed by the ACL name or list name, which on this example is ingress. In some

cases, the ACL name can be a number instead. Next, it states that this specific event was denied.

This value can be either permitted or denied based on the ACL policy outcome. TCP identifies

that the ACL is applied to Transmission Control Protocol (TCP) ports; in this example, the TCP

port number is 22. The first IP address, 192.168.1.3(1024), identifies the source with the

ephemeral port number inside the parenthesis. This IP address is extracted by the parser and

placed in the SourceIP attribute of the LogMessage table along with its decimal or long IP

notation. The purpose of having the decimal equivalent of the IP address is to readily calculate,

compare, and query the IP addresses and ranges if necessary. The second IP address after the

34

right-arrow represents the destination of the network packet with the port number inside the

parenthesis. Lastly, the number indicates the number of packets that was recorded for the event.

 This categorization allowed the logs to be exported into a database and given some

context. The first step in normalizing the router event logs was to parse them into CSV files that

can be entered in Microsoft Excel. The attributes assigned to the logs are listed and described in

Appendix B. The program used to parse the logs is a Perl script named, Parselog.pl, shown in

Appendix C. Oracle’s Structured Query Language (SQL) files and Microsoft Disk Operating

System (MS-DOS) batch files are used to create the tables, parsed the log files into CSV files,

and loaded the CSV files into the Oracle database tables. The CreateLogMessage.SQL shown in

Appendix D creates the Oracle database tables named LogMessage and IPToCountry. The

LogMessage table structure is shown in Appendix E. The IPToCountry table contains a range of

IP addresses and the known countries they belong. The IPToCountry table structure is shown in

Appendix F. The MS-DOS batch file called Doit.bat in Appendix G, invokes the PERL parser

for the log files from a particular USAF base, and invokes the CTL file that loads the resultant

CSV file into the LogMessage table. An overall control batch file called Redoit.BAT (see

Appendix H) invokes CreateLogMessage.SQL, LoadIPCountry.CTL and Doit.BAT. This file

displays the start time and end time. It also logs-in to Oracle using sqlplus with username and

password and calls the CreateLogMessage.SQL file. Then the LoadIPCountry.CTL (see

Appendix I) is invoked using sqlldr with the same username and password. A loadipcountry.log

is generated. After all the doit batch files for each base are executed the finished time is

displayed and a redoit.log file is generated. The LoadBasename.CTL (see Appendix J) loads the

tokens in the CSV file into the “LogMessage” table. Each base has its own

load<basename>.CTL file, specific to the path name for each base. A brief description of each

35

of the files is in Table 3. Figure 7 describes the diagram of the sequence in which the files were

executed.

Table 3. Description of Files

Filename Description
Parselog.PL Parser that accepts Cisco log files for

each base,tokenizes each log file record,
and outputs the tokens into a CSV file

CreateLogMessage.SQL Creates the Oracle tables named
“LogMessage” and “IPToCountry”

Doit.BAT Batch file that invokes the PERL parser
for the log files at a particular base, and
invokes the CTL file that loads the
resultant CSV file into the
“LogMessage” table. Each base has its
own Doit.BAT file, specific to the path
name for each base, and base name for
parser input

Redoit.BAT Overall control batch file. It invokes
CreateLogMessage.SQL,
LoadIPCountry.CTL and Doit.BAT

Load<basename>.CTL Loads the tokens in the CSV file into
the “LogMessage” table. Each base has
its own Load<basename>.CTL file,
specific to the path name for each base

LoadIPCountry.CTL Loads the IP ranges of each country
into the “IPToCountry” table

36

Figure 7. Sequence of File Executions

 3.4.2 Table Normalization with Index Table

 After the log data is parsed and loaded into the database, it is all contained in one flat

non-normalized table. This table as it stands can be queried. The query performance, however,

may not be efficient in some cases which normalization can improve. The first attempt to

normalize the database was unsuccessful due to the complexity of the algorithm and number of

attributes and records involved. The process is described briefly for informational purposes. To

summarize, Figure 8 visually depicts the tables, their attributes, primary keys, and the foreign

keys after normalization; for readability purposes, it is not in a standard entity-relationship

diagram and not all the tables are displayed. A message ID was appended to each record to

«OV-6» seq Operational Activ ity Sequence and Timing Descriptions [INOSC Log File Project]

CreateLogMessage.SQL /
Creates LogMessage,
IPToCountry Tables

Redoit.BAT /
Overall Control

Batch File

LoadIPCountry.CTL /
Loads Country Info into

IPToCountry Table

Doit.BAT / Controls
Parsing and Loading
Data for Each Base

Parselog.PL /
Tokenizes the Log

Files

Load<basename>.CTL
/ Loads the CSV File

into LogMessage Table

loop For Ev ery Set of Base Log Files

CD <to Directory for Base>()

Parses Base Log Files
into CSV Files()

37

uniquely identify it because the sequence number produced by the reporting device is not

distinctive enough when combined with logs from other devices. SQL scripts were created to

normalized the tables and their attributes. This pre-processing method of linking the primary

keys using a MsgIndex Table (see Figure 8) took longer than expected which would not have

been practical for this experiment or in real-world implementation. The methodology therefore

had to be revised which is described in the next section.

Figure 8. Visual Depiction of Normalized the Tables

3.4.3 Table Normalization with Associative Tables

For this experiment, eight normalized tables were created for performance comparison

(see Figure 9). The normalized tables were created based on the purpose of the log data; the

SQL script to create the tables is in Appendix K. The normalized tables created are single-

themed and at least in 4NF. Then, the tables are populated using eight individual SQL scripts

shown combined in Appendix L.

38

Figure 9. Table Structure of the Normalized Tables

In order to link the normalized tables to the non-normalized table, an associative entity is

created for each table (see Figure 10). These associative entities also allow the network analyst

to write less complex normalized queries. Each of the associative entity contains foreign keys

from the non-normalized table and the normalized that are combined to form a composite

primary key (see Figure 11). There are eight associative tables created using a SQL script

detailed in Appendix M. After the associative entities are created, they are populated using a

SQL script described in Appendix N. At this point, all the tables necessary are created and

populated; queries can now be run on both non-normalized and normalized configuration.

39

Figure 10. Table Structure of the Associative Tables

Figure 11. Example of Mapping the TBaseName_Link Associative Entity

3.5 Event Log Database Queries

 Once the log data had been normalized, SQL queries can be created to search for

statistical data, network security analysis, and other related information a network defender may

request. Examples include the number of distinct types of messages that are found in the logs,

the number of routers reporting from each location, the IP addresses associated to certain well-

known protocols. These simple queries can be built upon for more complex and informative

queries. To build the queries, SQL joins were used to efficiently combine tables into a single

view or table. Examples of the joins used include natural joins where duplicate columns are

excluded; inner join, a join where rows must have matching values in order to appear in the

result table; and outer joins where rows that do not have matching values in common columns

are included in the result (Hoffer et al., 2009, pg. 360-361). The results were analyzed for any

trends or commonality. Based on the results of the analysis, more advanced queries, sub-queries,

and joins were developed.

40

 Two sets of 15 queries were developed for both non-normalized (see Appendix O) and

normalized (see Appendix P) tables that are representative of simple and complex queries that

would typically be conducted by network security personnel. These queries were customized

according to the specific situation and purpose. Queries were also developed based on industry

best practices and event log analysis. The queries answer specific questions described in Table

4. The actual outputs of the queries were inspected to make sure the results matched and if there

are any discrepancies that they could be explained. The set of queries were specifically

developed to have a combination of both simple and complex queries to measure any

performance differences. In general, the complexity of the non-normalized queries does not vary

significantly in terms of number of joins as seen in Table 5a. The lengths of the queries are also

generally longer for normalized (see Table 5b), for more details on the queries see Appendix O

and P.

41

Table 4. Query Numbers and Purpose

Query
Number

Description/Purpose

Q1 What are the different message types?
Q2 What are the different base names?
Q3 What are the report IP addresses from each base?
Q4 What are the destination ports and how many events?
Q5 What are the Top 10 destination ports for January?
Q6 What bases have port 445 as a destination port and how many events?

Q7
What bases have port 445 as destination port and how many events occurred in
January?

Q8 How many events used port 23 (Telnet) as destination port?
Q9 What bases have port 23 as destination port and how many events?

Q10
What are the bases and message types with message severity of 2 (see
Appendix A) and the number of events?

Q11
What are the bases, ReportIPs, message types, with message severity of 2 and
the number of events during the month of January?

Q12
What bases have sourceIP from a user defined table in January and what
country?

Q13

What LogID, Basename, ReportIP, SourceIP, Country, Token3, and Token4
have sourceIP from Enemy table that is on the egress list and permitted and
what country?

Q14

What Basename, ReportIP, SourceIP, Country_Name, DestinationIP
Egress/Ingress, Permitted/Denied did a source IP address from a user defined
table show up in the log?

Q15 What are the Top 10 message types in the log?

42

Table 5. SQL Queries

(a) Non-normalized Queries

Query
Number

Non-normalized Syntax

Q1 SELECT DISTINCT (Messagetype) FROM Logmessage;

Q2 SELECT DISTINCT (Basename) FROM Logmessage ORDER BY Basename;

Q3 SELECT DISTINCT BASENAME, ReportIP FROM LOGMESSAGE ORDER BY BASENAME;

Q4
SELECT Destinationport, Count(*) AS "Number of Events" FROM Logmessage
WHERE Destinationport LIKE '%'
GROUP BY Destinationport ORDER BY "Number of Events";

Q5

SELECT * FROM (SELECT Destinationport, "Number of Events", RANK () OVER (ORDER BY "Number of Events"
DESC) Rank FROM (SELECT Destinationport, Count(*) AS "Number of Events" FROM Logmessage
WHERE Destinationport LIKE '%'
AND (logdatetime >= '01-jan-11' and logdatetime<= '31-jan-11')
GROUP BY Destinationport ORDER BY "Number of Events")) WHERE Rank <=10;

Q6
SELECT BaseName, Destinationport, Count(*) AS "Number of Events" FROM Logmessage
WHERE Destinationport = '445'
GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

Q7

SELECT BaseName, Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '445'
AND (logdatetime >= '01-Jan-11' AND logdatetime<= '31-Jan-11') GROUP BY BaseName, Destinationport ORDER BY
"Number of Events";

Q8

SELECT Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '23'
GROUP BY Destinationport ORDER BY "Number of Events";

Q9

SELECT BaseName, Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '23'
GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

Q10

SELECT DISTINCT Basename, Messagetype, Count(*) AS "Number of Events"
FROM Logmessage
WHERE messagetype LIKE '%-2-%'
GROUP BY Basename, Messagetype ORDER BY "Number of Events";

Q11

SELECT Basename, ReportIP, Messagetype, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Messagetype LIKE '%-2-%'
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";

Q12

SELECT BASENAME, ReportIP, SourceIP, COUNTRY_NAME
FROM LOGMESSAGE L, ENEMY E
WHERE L.SourceIPNum <= E.IP_TO AND L.SourceIPNum >= E.IP_FROM
AND (L.logdatetime >= '01-jan-11' and L.logdatetime <= '31-jan-11');

Q13

SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY_NAME, Token3, Token4
FROM LOGMESSAGE L, ENEMY E
WHERE L.SourceIPNum <= E.IP_TO AND L.SourceIPNum >= E.IP_FROM
AND TOKEN3 LIKE '%egress%'
AND TOKEN4 = 'permitted';

Q14

SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP COUNTRY_NAME, Token3, Token4
FROM Logmessage, Enemy
WHERE SourceIP = '203.171.234.174'
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM);

Q15

SELECT * FROM (SELECT MessageType, "Number of Events", RANK () OVER (ORDER BY "Number of Events"
DESC) Rank FROM (SELECT MessageType, Count(*) AS "Number of Events" FROM Logmessage
WHERE MessageType LIKE '%' GROUP BY MessageType ORDER BY "Number of Events")
) WHERE Rank <=10;

43

(b) Normalized Queries

Query
Number

Normalized Syntax

Q1 SELECT MsgType FROM TMESSAGE_TYPE ORDER BY MsgType;

Q2 SELECT BaseName FROM TBASENAME ORDER BY BaseName;

Q3

SELECT DISTINCT BaseName, ReportIP
FROM TBASENAME, TBASENAME_LINK, TREPORTIP, TREPORTIP_LINK
WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID
AND TBASENAME_LINK.LOGID = TREPORTIP_LINK.LOGID
AND TREPORTIP_LINK.REPORTIP_ID = TREPORTIP.REPORTIP_ID
ORDER BY BaseName;

Q4

SELECT DISTINCT PortNum, Count(*) AS "Number of Events"
FROM TDESTPORTS, TDESTPORT_LINK
WHERE TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
GROUP BY PortNum ORDER BY "Number of Events";

Q5

SELECT * FROM (SELECT Destinationport, "Number of Events", RANK () OVER (ORDER BY "Number of Events"
DESC) RANK FROM (SELECT Destinationport, Count(*) AS "Number of Events"
FROM Logmessage WHERE Logmessage.LOGID IN (SELECT TDESTPORT_LINK.LOGID
FROM TDESTPORTS, TDESTPORT_LINK
WHERE TDESTPORTS.DestPort_ID = TDESTPORT_LINK.DPort_ID)
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
GROUP BY Destinationport ORDER BY "Number of Events")) WHERE RANK <=10;

Q6

SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(*) AS "Number of Events" FROM
TBASENAME, BASENAME_LINK, TDESTPORTS, TDESTPORT_LINK WHERE TBASENAME.Base_ID =
TBASENAME_LINK.Base_ID AND TBASENAME_LINK.LOGID = TDESTPORT_LINK.LOGID
AND TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
AND TDESTPORTS.PortNum = '445'
GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of Events";

Q7

SELECT BASENAME, DestinationPort, Count(*) AS "Number of Events" FROM Logmessage
WHERE Logmessage.LogID IN (SELECT TDESTPORT_LINK.LOGID FROM TDESTPORTS, TDESTPORT_LINK
WHERE DESTPORTS.DestPort_ID = TDESTPORT_LINK.DPort_ID AND TDESTPORTS.PortNum = '445')
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
GROUP BY BASENAME, DestinationPort ORDER BY "Number of Events";

Q8

SELECT DISTINCT PortNum, Count(*) AS "Number of Events"
FROM TDESTPORTS, TDESTPORT_LINK
WHERE TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
AND TDESTPORTS.PortNum = '23'
GROUP BY PortNum ORDER BY "Number of Events";

Q9

SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(*) AS "Number of Events"
FROM TBASENAME, TBASENAME_LINK, TDESTPORTS, TDESTPORT_LINK
WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID
AND TBASENAME_LINK.LOGID = TDESTPORT_LINK.LOGID
AND TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
AND TDESTPORTS.PortNum = '23'
GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of Events";

Q10

SELECT DISTINCT Basename, Msgtype, Count(*) AS "Number of Events"
FROM TBASENAME, TBASENAME_LINK, TMESSAGE_TYPE, TMESSAGE_TYPE_LINK
WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID
AND TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID
AND TBASENAME_LINK.LOGID = TMESSAGE_TYPE_LINK.LOGID
AND TMESSAGE_TYPE.MSGTYPE LIKE '%-2-%'
GROUP BY Basename, Msgtype ORDER BY "Number of Events";

Q11

SELECT Basename, ReportIP, Messagetype, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Logmessage.LOGID IN (
SELECT TMESSAGE_TYPE_LINK.LOGID
FROM TMESSAGE_TYPE, TMESSAGE_TYPE_LINK
WHERE TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID
AND TMESSAGE_TYPE.MSGTYPE LIKE '%-2-%')
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";

44

Q12

SELECT Basename, ReportIP, SourceIP, COUNTRY_NAME
FROM Logmessage, Enemy
WHERE Logmessage.LOGID IN (
SELECT TBASENAME_LINK.LOGID
FROM TBASENAME, TBASENAME_LINK, TSOURCE_IP, TSOURCE_IP_LINK
WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID
AND TSOURCE_IP.SOURCEIP_ID = TSOURCE_IP_LINK.SOURCEIP_ID
AND TBASENAME_LINK.LOGID = TSOURCE_IP_LINK.LOGID)
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM);

Q13

SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY_NAME, Token3, Token4
FROM Logmessage JOIN Enemy
ON Logmessage.LOGID IN (
SELECT TBASENAME_LINK.LOGID
FROM TBASENAME, TBASENAME_LINK, TSOURCE_IP, TSOURCE_IP_LINK
WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID
AND TSOURCE_IP.SOURCEIP_ID = TSOURCE_IP_LINK.SOURCEIP_ID
AND TBASENAME_LINK.LOGID = TSOURCE_IP_LINK.LOGID)
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM)
AND TOKEN3 LIKE '%egress%'
AND TOKEN4 = 'permitted';

Q14

SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP, COUNTRY_NAME, Token3, Token4
FROM Logmessage, Enemy
WHERE Logmessage.LogID IN (SELECT TSOURCE_IP_LINK.LogID
FROM TSOURCE_IP, TSOURCE_IP_LINK
WHERE TSOURCE_IP.SourceIP_ID = TSOURCE_IP_LINK.SourceIP_ID
AND TSOURCE_IP.SourceIP = '203.171.234.174')
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >= Enemy.IP_FROM);

Q15

SELECT * FROM (SELECT MsgType, "Number of Events", RANK () OVER (ORDER BY "Number of Events" DESC)
RANK FROM (SELECT MsgType, Count(*) AS "Number of Events" FROM TMESSAGE_TYPE,
TMESSAGE_TYPE_LINK
WHERE TMESSAGE_TYPE.MsgType_ID = TMESSAGE_TYPE_LINK.MsgType_ID GROUP BY MsgType ORDER
BY "Number of Events"))WHERE RANK <=10;

3.6 Runtime Comparison of Normalized and Non-normalized Event Logs

 A series of 32 query runs, both non-normalized and normalized, are performed and the

runtime for each of the 15 queries was recorded using Oracle’s timing command. According to

the central limit theorem as the sample size grows larger (more than 30) the sampling

distribution becomes normal and has a mean equal to the population mean (Fields, 2009, pg. 42).

In order to collect the necessary timing and statistical data without accumulating the large output

and still be able to fetch the queries, the script executes Oracle’s “autotrace traceonly” command.

For more details, see Appendix O and P. Two more SQL scripts where created to invoke the

non-normalized and normalized queries automatically (see Appendix Q and R). Oracle’s timing

format is hh:mm:ss.ss. In order to have a simple numerical format for statistical analysis, the

runtime unit of measurement was converted to seconds.

45

 3.6.1 Statistical Analysis

 To analyze if there are differences between the means of non-normalized and normalized

queries, a Student’s t-test of independent samples was employed. The null and alternative

hypotheses are:

H0 = There are no statistical differences between the means of non-normalized and

normalized queries.

HA = There are statistical differences between the means of non-normalized and

normalized queries.

The program used for statistical analysis is SPSS release 16.0. Fifteen variables were created in

SPSS to represent the 15 queries and a grouping variable with values of 1 and 2 for non-

normalized and normalized groups respectively. Sixty-four timing data points were entered in

SPSS and assigned into two groups of 32. The groupings identify whether a query is non-

normalized or normalized. The complete dataset can be found in Appendix S. The results of the

queries, timing, and statistical analysis are discussed in the next chapter.

 3.6.2 Preprocessing and Disk Space Requirements

 When comparing the runtimes between non-normalized and normalized it is necessary to

consider the preprocessing time incurred to create and populate the normalized tables. This

processing time overhead can be found in the SQL logs when the tables were created and

populated (see Table 21). The break-even point can be determined by calculating the

preprocessing time divided by the difference of the average mean time of the non-normalized

(NN) and normalized (N) queries.

46

 Equation 1

(Note: make font color of caption white)
(1)

Equaticaption white)

(2)

ote: make font color of caption white)
(3)

Note: make font color of caption h(4)

To be specific, the break-even point is the number of times the queries need to be ran to pay off

for the normalization preprocessing overhead. The tables are only created once but can be

updated whenever necessary. For this experiment, however, the normalized tables were

populated one time using a fixed amount of 30 million event logs. In some real-world situations,

the preprocessing would only occur if a new value or data does not already exist in the

normalized tables.

 Creating the normalized tables will obviously incur additional disk space to

accommodate the extra tables. There are several ways to determine the table sizes. One is using

Oracle’s Database Control Interface. Using Oracle’s web-based graphical user interface, the

table sizes are located in the Administration tab, Schema, Database Objects, Tables, search for

the table name, and the table size is under Statistics called Sample Size. However, there is a lack

of documentation on what this parameter actually measures. The second and preferred option

uses the average row length multiplied by the number of rows. According to Oracle’s

15

1

mean time average NN
i

i

15

1

mean time average N
i

i

mean time average N - mean time average NN = Difference

Difference / timeingPreprocess =point even -Break

47

documentation, AVG_ROW_LEN is the “average row length, including the row overhead, in

bytes” (2005). The SQL syntax is:

SELECT TABLE_NAME, ROUND ((AVG_ROW_LEN * NUM_ROWS / 1024), 2) SIZE_KB FROM USER_TABLES ORDER BY
TABLE_NAME;

3.7 Summary

 This chapter explained, in detail, each step taken to perform the experiment and be able

to reproduce it as accurately as possible. The main steps explained include parsing and loading

the event logs, normalizing the database, running and comparing the queries, and calculating the

preprocessing time and disk space. The next chapter shows and analyzes the results of the

methods described in this chapter.

48

IV. Results

4.1 Overview

 The results of the statistical analysis and query performance will be analyzed in this

chapter. First, the results of the t-test from SPSS are discussed as it relates to the experiment,

specifically the test statistic (t), degrees of freedom (df), and the probability value (p-value) of

the test statistic. Information from the group or summary statistics will also be briefly discussed.

The main findings of the statistical analysis are in the independent samples test. Second, the

runtimes and statistical output from the actual queries will be discussed explaining the difference

in performance between non-normalized and normalized configuration.

4.2 Test Statistics Results

 Table 6 shows the summary statistics of the t-test. Each row represents one of the 15

queries (Q1-15). The first column indicates the results for non-normalized or normalized

queries. As mentioned in Chapter 3, according to the central limit theorem as the sample size

grows larger (more than 30) the sampling distribution becomes normal and has a mean equal to

the population mean (Fields, 2009, pg. 42). Each query ran 32 times (N) and the mean runtime

in seconds including the standard deviation and standard error mean are also included in the

table.

49

Table 6. Group Statistics

Is this query
Normalized or Non-
Normalized N Mean Std. Deviation Std. Error Mean

Q1
Non-Normalized 32 179.1747 3.37547 .59671

Normalized 32 .0088 .02136 .00378

Q2
Non-Normalized 32 178.7297 3.62914 .64155

Normalized 32 .0150 .03844 .00679

Q3
Non-Normalized 32 179.8128 4.47180 .79051

Normalized 32 147.5572 14.22413 2.51449

Q4
Non-Normalized 32 178.9691 3.51893 .62206

Normalized 32 7.1028 .60959 .10776

Q5
Non-Normalized 32 180.7591 6.94209 1.22720

Normalized 32 227.1262 5.83329 1.03119

Q6
Non-Normalized 32 178.5216 4.16421 .73613

Normalized 32 22.7825 5.17363 .91458

Q7
Non-Normalized 32 179.5547 6.31525 1.11639

Normalized 32 428.8850 21.87962 3.86781

Q8
Non-Normalized 32 179.0097 3.29555 .58258

Normalized 32 5.9631 1.43762 .25414

Q9
Non-Normalized 32 178.4925 3.67427 .64953

Normalized 32 22.9162 2.04290 .36114

Q10
Non-Normalized 32 179.7838 5.02242 .88785

Normalized 32 32.7353 3.60482 .63725

Q11
Non-Normalized 32 178.4147 3.71542 .65680

Normalized 32 336.3216 13.58484 2.40148

Q12
Non-Normalized 32 3835.8384 233.20236 41.22474

Normalized 32 769.9984 15.10613 2.67041

Q13
Non-Normalized 32 179.8703 3.49814 .61839

Normalized 32 259.1588 7.28158 1.28721

Q14
Non-Normalized 32 178.7362 3.99942 .70700

Normalized 32 7.7987 1.37545 .24315

Q15
Non-Normalized 32 179.8806 4.23768 .74912

Normalized 32 21.0847 .72725 .12856

 The main results of the t-test are in Table 7. Again, each row represents one of the 15

queries, additionally, the first column indicates if the null hypothesis (H0) of “There are no

statistical differences between the means of non-normalized and normalized queries” is either

Rejected or Failed to reject. SPSS also includes the Levene’s test for equality of variances that is

50

similar to a t-test, wherein, it tests if the variances are assumed equal or are assumed different. If

the p-value (Sig) of the Levene’s test is less than 0.05 then there is a significant chance that the

variances are assumed to be different. If p > 0.05, then the variances are assumed equal. For

example, Q1 in the table has a Levene’s test of p < 0.05, therefore, the variances are assumed to

be different; however, Q3 has p = 0.149 that is larger than 0.05, therefore, variances are assumed

equal. Other queries with p > 0.05 are Q5, Q6, Q10, and Q13.

 The remaining columns in Table 7 show the results of the t-test for equality of means.

The test statistic column shows the t-value used by SPSS in conjunction with the df to calculate

probability that H0 is true. Furthermore, the negative t-value denotes that non-normalized

condition has smaller mean and performed faster than the normalized condition. The non-

normalized queries that performed faster are Q5, Q7, Q11, and Q13. The p-values (Sig. 2-tailed)

of the t-test are all exceedingly less than 0.05 (p = 0.000) which signify that there is enough

evidence to reject the H0. The first column shows that H0 is rejected in all of the queries. The

full SPSS table output is in Appendix T; the last column of the table shows additional

information about the confidence interval for the mean difference at 95%. These boundaries

suggest where the true values of the mean difference can be found. The findings, in general,

suggest that most of the normalized queries performed faster than the non-normalized queries

except for Q5, Q7, Q11, and Q13 and they were all significant at p < 0.05.

51

Table 7. Independent Samples Test

Reject or
Accept null F Sig. t df

Sig. (2-
tailed)

Equal variances
assumed 91.353 0.000 300.253 62.000 0.000

Reject
Equal variances not
assumed 300.253 31.002 0.000
Equal variances
assumed 101.004 0.000 278.553 62.000 0.000

Reject
Equal variances not
assumed 278.553 31.007 0.000

Reject
Equal variances
assumed 2.134 0.149 12.237 62.000 0.000
Equal variances not
assumed 12.237 37.069 0.000
Equal variances
assumed 61.590 0.000 272.229 62.000 0.000

Reject
Equal variances not
assumed 272.229 32.859 0.000

Reject
Equal variances
assumed 0.581 0.449 -28.927 62.000 0.000
Equal variances not
assumed -28.927 60.213 0.000

Reject
Equal variances
assumed 0.379 0.540 132.653 62.000 0.000
Equal variances not
assumed 132.653 59.292 0.000
Equal variances
assumed 17.805 0.000 -61.935 62.000 0.000

Reject
Equal variances not
assumed -61.935 36.130 0.000
Equal variances
assumed 25.719 0.000 272.259 62.000 0.000

Reject
Equal variances not
assumed 272.259 42.386 0.000
Equal variances
assumed 28.285 0.000 209.341 62.000 0.000

Reject
Equal variances not
assumed 209.341 48.495 0.000

Reject
Equal variances
assumed 0.847 0.361 134.553 62.000 0.000
Equal variances not
assumed 134.553 56.241 0.000
Equal variances
assumed 20.825 0.000 -63.425 62.000 0.000

Reject
Equal variances not
assumed -63.425 35.612 0.000
Equal variances
assumed 34.776 0.000 74.213 62.000 0.000

Reject
Equal variances not
assumed 74.213 31.260 0.000

Reject
Equal variances
assumed 2.546 0.116 -55.522 62.000 0.000
Equal variances not
assumed -55.522 44.586 0.000
Equal variances
assumed 38.343 0.000 228.634 62.000 0.000

Reject
Equal variances not
assumed 228.634 38.232 0.000
Equal variances
assumed 10.650 0.002 208.922 62.000 0.000

Reject
Equal variances not
assumed 208.922 32.824 0.000

Levene's Test for
Equality of Variances t-test for Equality of Means

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q13

Q14

Q15

Q9

Q10

Q11

Q12

52

4.3 Query Performance Statistics

 As mentioned in the previous section, all of the normalized queries outperformed non-

normalized queries except Q5, Q7, Q11, and Q13. Several factors could affect performance

depending on each specific query. The most common issues are the maximum number of

records involved, the number of joins, the number of physical hard drive reads, or a combination

of any of these factors. According to Oracle’s documentation, physical reads is defined as the

“total number of data blocks read from disk”; it is a combination of direct, cache, and private

buffer reads (2009). Each of the 15 queries both non-normalized (NN) and normalized (N) will

be compared side by side using one of the query logs and discussed why one may have

outperformed the other. The number of physical hard drive reads varies from run to run;

however, the maximum number of records involved and the number of joins stays the same.

Refer to Table 4 for the query description, Table 5a and 5b for non-normalized and normalized

query syntax.

 4.3.1 Q1: What are the different message types?

Table 6. Q1 Statistics

Q1 Mean Max Number of Rows Number of Joins Physical Reads

NN 179.1747 30M 0 925255

N .0088 169 0 0

 Q1 results in Table 6 shows that N (M = .0088) exceedingly outperforms NN (M =

179.1747). The big difference is in number of records and physical hard drive reads. The N

query only had to sort through 169 rows compared to 30 million for NN. In addition the number

of physical reads for N query is virtually zero.

53

 4.3.2 Q2: What are the different base names?

Table 7. Q2 Statistics

Q2 Mean Max Number of Rows Number of Joins Physical Reads

NN
178.7297

30M 0 925434

N
.0150

44 0 0

 Q2 results in Table 7 shows that N (M = . 0150) exceedingly outperforms NN (M =

178.7297). Q2 is very similar to Q1 in terms of structure. The only difference is the type of

attribute involved as seen in the syntax. Similarly, the big difference is in number of records and

physical hard drive reads. The N query only had to sort through 44 rows compared to 30 million

for NN. In addition, the number of physical reads for N query is virtually zero.

 4.3.3 Q3: What are the report IPs from each base?

Table 8. Q3 Statistics

Q3 Mean Max Number of Rows Number of Joins Physical Reads

NN
179.8128

30M 0 925436

N
147.5572

30M 3 249874

 Q3 results in Table 8 shows that N (M = 147.5572) outperforms NN (M = 147.5572).

The difference in this query is the number of joins and physical hard drive reads, while the

maximum number of rows is the same. The N query involves four tables and even if it has three

times the number joins. The number of physical reads is less than one-third.

54

 4.3.4 Q4: What are the destination ports and how many events?

Table 9. Q4 Statistics

Q4 Mean Max Number of Rows Number of Joins Physical Reads

NN
178.9691

1.536M 0 925536

N
7.1028

9.294M 0 18509

 Q4 results in Table 9 shows that N (M = 178.9691) outperforms NN (M = 7.1028). The

difference in this query is the maximum number of rows and physical hard drive reads, while the

number of joins is the same. The N query only involves two tables.

 4.3.5 Q5: What are the Top 10 destination ports for January?

Table 10. Q5 Statistics

Q5 Mean Max Number of Rows Number of Joins Physical Reads

NN
180.7591

3841 0 925324

N
227.1262

9.294M 1 977595

 Q5 results in Table 10 shows that NN (M = 180.7591) outperforms N (M = 227.1262).

The difference in this query is the maximum number of rows, number of joins, and physical hard

drive reads all in favor of NN. The N query had to sort through over 9 million records while the

NN query only involved 3,841 rows and a difference of 52,271 physical reads. Additionally, the

N query had to go to the Logmessage table to fetch for the LogDateTime timestamp after

processing a subquery. In all, the N query had to process three tables versus one for the NN

query.

55

 4.3.6 Q6: What are the bases with port 445 as destination port and how many

events?

Table 11. Q6 Statistics

Q6 Mean Max Number of Rows Number of Joins Physical Reads

NN
178.5216

364K 0 925989

N
22.7825

30M 3 77602

 Q6 results in Table 11 shows that N (M = 22.7825) outperforms NN (M = 178.5216).

The difference in this query is the maximum number of rows, number of joins, and physical hard

drive reads. The N query had to sort through 30 million rows in table TBASENAME_LINK

how ever it is a smaller table with only two columns. There are three times the number of joins

in query N however, the physical reads is 848,387 less than NN.

 4.3.7 Q7: What are the bases with port 445 as destination port and how many events

in January?

Table 12. Q7 Statistics

Q7 Mean Max Number of Rows Number of Joins Physical Reads

NN
179.5547

910 0 925632

N
428.8850

9.294M 1 149889

 Q7 results in Table 12 shows that NN (M = 179.5547) outperforms N (M = 428.8850).

The difference in this query is the maximum number of rows and number of joins both in favor

of NN. However, the physical reads, although it is lower for the N query by 775,743 reads the

performance remained slow. Q7 is similar to Q5 in that it has to go to the Logmessage table to

56

fetch for the LogDateTime timestamp after processing a subquery in a nested loop. In all, the N

query had to process three tables versus one for the NN query.

 4.3.8 Q8: How many events have port 23 (Telnet) as destination port?

Table 13. Q8 Statistics

Q8 Mean Max Number of Rows Number of Joins Physical Reads

NN
179.0097

8293 0 925627

N
5.9631

9.294M 1 18680

 Q8 results in Table 13 shows that N (M = 5.9631) outperforms NN (M = 179.0097). The

difference in this query is the maximum number of rows and number of joins both in favor of

NN. The physical reads is lower for the N query by 906,947. These statistics are very similar to

Q7 except N outperformed NN on this case. The major difference is that the N query in this case

did not have to go to the Logmessage table to fetch for the LogDateTime timestamp. The N

query also had to process only two tables.

 4.3.9 Q9: What bases use port 23 (Telnet) and how many?

Table 14. Q9 Statistics

Q9 Mean Max Number of Rows Number of Joins Physical Reads

NN
178.4925

8293 0 925627

N
22.9162

30M 3 77615

 Q9 results in Table 14 shows that N (M = 22.9162) outperforms NN (M = 178.4925).

The difference in this query is the maximum number of rows and number of joins both in favor

of NN. However, the physical reads is lower for the N query by 848,012. This query is similar

57

to Q8 in terms of the question but with additional data such as the base names. It also took

longer by a few seconds.

 4.3.10 Q10: What are the bases and message types with message severity of 2 and

the number of events?

Table 15. Q10 Statistics

Q10 Mean Max Number of Rows Number of Joins Physical Reads

NN
179.7838

1.536M 0 925638

N
32.7353

30M 3 119950

 Q10 results in Table 15 shows that N (M = 32.7353) outperforms NN (M = 179.7838).

The difference in this query is the maximum number of rows and number of joins both in favor

of NN. However, the number of physical reads is lower for N by 805,688 reads. Further, the N

query does not have to go to the Logmessage to get additional data.

 4.3.11 Q11: What are the bases, ReportIP, message type, with message severity of 2

and the number of events during the month of January 2011?

Table 16. Q11 Statistics

Q11 Mean Max Number of Rows Number of Joins Physical Reads

NN
178.4147

3841 0 925653

N
336.3216

30M 2 1093787

 Q11 results in Table 16 shows that NN (M = 178.4147) outperforms N (M = 336.3216).

The difference in this query is the maximum number of rows, number of joins, and number of

physical reads all in favor of NN. This is similar to Q5 and Q7 in that it has to go to the

58

Logmessage table to fetch for the LogDateTime timestamp after processing a subquery in a

nested loop. In all, the N query had to process three tables versus one for the NN query.

 4.3.12 Q12: What bases have sourceIP from Enemy table in January 2011 and what

country and reportIP?

Table 17. Q12 Statistics

Q12 Mean Max Number of Rows Number of Joins Physical Reads

NN
3835.8384

196K 3 13734324

N
769.9984

30 M 5 1189702

 Q12 results in Table 17 shows that N (M = 769.9984) outperforms NN (M = 3835.8384).

The difference in this query is the maximum number of rows and number of joins both in favor

of NN. However, the number of physical reads is lower for N by 685,738 reads. This query has

the highest difference in means (3,065 seconds). This is also one of the two queries with the

highest number of joins and tables for both N and NN. There are two tables involved in the NN

query and six tables in the N query. The N query still outperformed NN even though the N

query had to go to the Logmessage table to fetch for the LogDateTime timestamp. However, the

NN query also had to use three joins and filter results using the timestamp, which could have

caused the slow performance.

59

 4.3.13 Q13: What LogID, Basename, ReportIP, SourceIP, Country, Token3, and

Token4 have sourceIP from Enemy table that is on the egress list and permitted and what

country?

Table 18. Q13 Statistics

Q13 Mean Max Number of Rows Number of Joins Physical Reads

NN
179.8703

1023 3 926290

N
259.1588

30M 5 1066356

 Q13 results in Table 18 shows that NN (M = 179.8703) outperforms N (M = 259.1588).

The difference in this query is the maximum number of rows, number of joins, and number of

physical reads all in favor of NN. This query is similar to Q12 but with additional data such

Token 3 and 4 minus the timestamp. The physical reads in this query is lower for NN by

140,066 reads. The NN query was faster because the N query needed to fetch more data (Token

3 and 4) from the non-normalized Logmessage table.

 4.3.14 Q14: What Basename, LogDateTime, ReportIP, SourceIP,

COUNTRY_NAME, DestinationIP Egress/Ingress (Token3), Permitted/Denied (Token4)

did a source IP address from Enemy table show up in the log?

Table 19. Q14 Statistics

Q14 Mean Max Number of Rows Number of Joins Physical Reads

NN
178.7362

36493 3 925580

N
7.7987

11M 4 26592

60

 Q14 results in Table 19 shows that N (M = 7.7987) outperforms NN (M = 178.7362).

The difference in this query is the maximum number of rows and number of joins both in favor

of NN. However, the number of physical reads is lower for N by 898,988 reads. This query is

similar to Q13 but with additional information and it searches for a specific IP address from the

Enemy table. Oracle also automatically implemented an index unique scan for the N query for

this instance.

 4.3.15 Q15: What are the Top 10 message types in the log?

Table 20. Q15 Statistics

Q15 Mean Max Number of Rows Number of Joins Physical Reads
NN

179.8806
30M 0 925581

N
21.0847

30M 1 60841

 Q15 results in Table 20 shows that N (M = 21.0847) outperforms NN (M = 179.8806).

The difference in this query is the number of joins and physical hard drive reads. The NN query

did not use any joins and the N query used one join. The number of physical reads is lower for N

by 864,740 reads. The maximum number of rows is the same. This query is similar to Q5;

however, the N query does not have to go to the Logmessage table for additional data, hence, the

query was faster.

 In general, the query with higher physical hard drive reads performs slower except in

cases where the normalized queries have to access the non-normalized Logmessage for

additional data. The mean and physical hard drive reads for NN queries remained relatively

constant throughout the experiment while the N queries have values that vary from query to

query. This experiment showed that query performance is faster on normalized table if all the

61

necessary data are contained in the normalized tables. If however, the query needs to fetch

additional data from the non-normalized table, then query performance decreases.

4.4 Preprocessing of Normalized Tables

 4.4.1 Preprocessing Time

The query performance results showed that in some cases, it is possible to normalized the

tables based on consequential queries if the queries are known ahead of time. Nevertheless,

completely normalizing a large table incurs pre-processing time that can negate any query

performance advantage. The pre-processing in real-world network log analysis would be to

update the normalized tables only if new log data does not exist already. In other words, the

normalized tables will only be updated if new data is introduced from the logs. Therefore,

majority of the pre-processing time will only be incurred during the initial setup of the

normalized tables. Generally, static tables such as the Basename, Timezones, and MessageTypes

should not change often. The actual pre-processing time will also depend on the overall size of

the log. The preprocessing times can be found in the Table 21. As discussed in section 3.6.1,

below are the preprocessing parameters.

NN average mean time = 423.04 seconds

N average mean time = 152.63 seconds

Difference 423.04 - 152.63 = 270.41 seconds

Total preprocessing time = 8,655.63 seconds

Break-even point

8,655.63/270.41 = 32 times

62

These results show that the normalized queries need to be ran at least 32 times to pay

back the preprocessing overhead for this experiment. In real-world scenario, if the queries are

performed daily then the normalization will pay off in approximately one month.

Table 21. Preprocessing Time

Log Filename Total Preprocessing Time
(hh:mm:ss.00)

1. BuildLinkTables.log 00:00:00.83

2. BuildSummaryTables.log 00:00:00.43

3. PopLinkTables.log 01:57:38.64

4. PopTBasename.log 00:03:08.84

5. PopTDestIP.log 00:03:57.23

6. PopTDestPorts.log 00:03:10.17

7. PopTMessage_Type.log 00:03:05.28

8. PopTReportIP.log 00:03:09.07

9. PopTSourceIP.log 00:03:33.08

10. PopTSourcePorts.log 00:03:16.68

11. PopTTZ.log 00:03:15.38

 Grand Total = 02:24:15.63
or 8,655.63 seconds

 4.4.2 Disk Space Requirement

 The process for determining the disk space requirement was discussed in section 3.6.1.

Table 22 shows the table sizes for each of the normalized tables and the corresponding

63

associative tables. The sizes are measured in kilobytes (KB) and the total in gigabytes (GB).

The additional disk space of 1.36GB is not a substantial increase.

Table 22. Table Sizes

Table Name Size KB

TBASENAME .47

TBASENAME_LINK 240194.84

TDESTINATION_IP 15693.54

TDESTINATION_IP_LINK 110054.61

TDESTPORTS 544.05

TDESTPORT_LINK 81689.03

TMESSAGE_TYPE 3.47

TMESSAGE_TYPE_LINK 270435.92

TREPORTIP 4.16

TREPORTIP_LINK 269978.55

TSOURCEPORTS 568.93

TSOURCEPORT_LINK 81665.1

TSOURCE_IP 7016.52

TSOURCE_IP_LINK 113502.11

TTIMEZONE .05

TTIMEZONE_LINK 231300.3

64

Total 1,422,651.65 KB
or 1.36 GB

4.5 Statistical Query Results

 Actual statistical information from the event logs and some of the actual results from the

queries are found in Appendix U and V.

4.6 Summary

 Database normalization improved 11 of the 15 normalized queries performed using 30

million router log events; however, performance is also dependent on the type of query executed.

Query performance is faster on normalized table if all the necessary data are contained in the

normalized tables. If however, the query needs to fetch additional data from the non-normalized

table, then query performance decreases. The tradeoff between using a non-normalized versus

normalized database is additional preprocessing time that depends on data and purpose of the

queries. Additionally, normalized database adds extra storage requirements although minimal in

this experiment. Finally, a normalized database has better table organization and maintains

better data consistency than non-normalized. The next chapter reiterates and explains the main

findings of the research, recommendation for actions, and recommendation for future research.

65

V. Conclusion and Recommendations

Chapter Overview

 This chapter discusses the conclusions of the research, its significance, recommendation

for actions and future research.

Conclusions of Research

 The two prevailing event log standards today are, MITRE’s CEE and the Syslog protocol

(RFC 5424). Regulatory compliance and network security issues have increased the importance

of event logs to many organizations. Log analysis still remain complex due to lack of industry

standards, lack of simple and efficient analysis methods to process numerous amount of logs

generated daily.

 Event logs can provide cyber situational awareness to management and other network

users in the organization. Proper event log utilization through information systems monitoring

and threat detection enhances mission assurance and information assurance. Database analysis

of event logs is only one of the tools in the information system security toolbox that is still

limited and dependent on the human operator’s understanding and knowledge of the entire

situation. One way to increase understanding of a situation is to correlate different events

wherein logs contribute critical data for analysis.

 Event log analysis can be performed using relational databases. To enhance database

query performance, databases are usually denormalized. However, database normalization can

also increase query performance. Database normalization improved majority of the queries

performed using 30 million router log events; however, performance is also dependent on the

type of query executed. Query performance is faster on normalized table if all the necessary data

are contained in the normalized tables. If however, the query needs to fetch additional data from

66

the non-normalized table, then query performance decreases. The tradeoff between using a non-

normalized versus normalized database is additional preprocessing time that depends on data and

purpose of the queries. Additionally, normalized database adds extra storage requirements

although minimal in this experiment. Finally, a normalized database has better table

organization and maintains better data consistency than non-normalized.

Significance of Research

 This research explored the different standards for event log generation, transport, storage,

and analysis. It showed that database normalization does not always decrease query performance

on databases. Database normalization enhanced performance for majority of the queries and will

improve event log analysis for network defenders. Eleven of the 15 of the normalized queries,

on average performed 2.77 times faster than non-normalized queries. There is a total of 270

seconds advantage in average mean query time for normalized queries. This experiment also

established an early model for log analysis that is simple, customizable, and cost effective option

to commercial log analyzers.

Recommendations for Action

One of the main findings of this research is that database query performance on event

logs can be faster using normalized tables if all the data required is in the normalized tables. In

most cases where the data required are not contained in the normalized tables, query

performance degrades. If the queries that need to be performed on the event logs are known

ahead of time, then the tables can be normalized to fit the queries in order to capture all the

required data and avoid fetching them from the non-normalized table. Queries must be written to

exclusively utilize the normalized tables and avoid referring back to the non-normalized table as

much as possible to take advantage of faster performance. However, there are cases when the

67

queries and questions that an organization needs to ask are not pre-determined. If a new type of

query is needed, the normalized tables can be updated and renormalized. The analyst, therefore,

should consider the pre-processing time required and the frequency of the queries. For example,

if a query is only required once, it may not be practical to normalize the tables for this purpose as

the analyst can just directly query the non-normalized table. The decision to normalize the tables

should be a balance between the pre-processing time required and the desired purpose of the

query. Organizations can also implement a weighted-query approach where certain queries are

assigned levels of importance and normalization can be tailored to the most important ones.

Since performances vary from the type of queries, organizations may prefer a slower

performance on some and faster on queries that are more important.

There is no fail-safe solution for normalizing event logs. Just like any other information

systems solutions, the decision should be made based on the mission. Not every organization or

base has similar missions and therefore the purpose for analyzing event logs could vary

significantly. For instance, an organization that still uses Telnet to perform its mission may not

be very interested in Telnet permitted connections; however, an organization that does not use

Telnet should be very interested in Telnet type logs. IT personnel who understand the local

mission can make better judgments of the results and take timely and decisive actions. Finally,

proper Information Assurance requires the validation and verification of the integrity of results

generated by a commercial log analysis tool. Network defenders can use this relational database

to collect and analyze event log data to provide the ability to validate results generated by

commercial tools.

68

Recommendations for Future Research

 Despite the important and significant findings of this research, there are still several

follow-up studies that can expand the results. This research was only conducted on one set of

30M records. A future study can perform further performance analysis using lower incremental

amount of event logs (300K and 30K) and compare the performances. What is the query

performance difference between non-normalized and normalize databases if the total size of the

logs is 30M, 300K, and 30K? Does the total size of event logs affect the query performance of

non-normalized and normalize databases? Moreover, can further normalization of the logs by

creating additional normalized tables increase or decrease query performance? Creating

additional normalized tables will minimize the need to fetch for additional data from the non-

normalized logs, which can improve query performance, however it can complicate the queries

and add additional joins. Another future research is to create a model to determine what

variables are predictive of slowing down query performance. Does the maximum number of

rows processed, number of joins, physical reads and others correlate to slow query performance?

Finally, this experiment only used Cisco router and switch event logs but should be applicable to

other cyber logs; a future study using other event logs can validate the results.

69

APPENDIX A

Severity Level Description

0 - emergency System is unusable

1 - alert Immediate action required

2 - critical Critical condition

3 - error Error condition

4 - warning Warning condition

5 - notification Normal but significant condition

6 - informational Informational message only

7 - debugging Message that appears during debugging only

Event Logs Severity Code (Lonvick, 2001) p. 9

70

APPENDIX B

Attribute Type Description

LogID INTEGER, Primary key and unique identifier for each record
BaseName VARCHAR2(20), The name of the base/location where the log came

from
LogDateTime TIMESTAMP, The timestamp from the log server
ReportIP VARCHAR2(20), The IP address of the reporting router
ReportIPNum INTEGER, The decimal equivalent of the report IP address
RouterNum INTEGER, The router sequence number assigned to each

event
RouterNum2 INTEGER, A second router sequence number assigned to each

event
RouterDateTime TIMESTAMP, The timestamp from the router
RouterMsecs INTEGER, Millisecond from the timestamp from the router
TimeZone VARCHAR2(6), Time zones in the logs
MessageType VARCHAR2(35), Identifies the type of message or event
SourceIP VARCHAR2(20), Source IP address of the event recorded
SourceIPNum INTEGER, The decimal equivalent of the Source IP address
SourcePort INTEGER, Source port numbers in the logs
DestinationIP VARCHAR2(20), Destination IP address of the event recorded
DestinationIPNum INTEGER, The decimal equivalent of the destination IP

address
DestinationPort INTEGER, Destination port numbers in the logs

71

APPENDIX C

Parselog.PL

Description

This a script to extract relevant elements from a Cisco syslog file and write it into a CSV file that
can be easily imported into Oracle. This file must be present in each of the base folders.

#!/usr/bin/perl
use warnings;
use strict;

parselog.pl -- a script to extract relevant elements from a cisco syslog file
and write it into a CSV file that can be easily imported into oracle

Version 1.0 - Initial version - 02/28/11
Version 1.2 - Fixed error in line count - 03/01/11
Version 1.2 - Fixed variable router message numbers - 03/02/11
Version 1.3 - Fixed millisecond to zero when not present - 03/03/11
Version 1.4 - Fixed status message - 03/03/11
Version 1.5 - Fixed bug in identifying dotted decimal - 03/04/11
Version 1.6 - Fixed bug in router time trailing colon - 03/04/11
Version 1.7 - Rewrite - 03/06/11
Version 1.8 - Debug - 03/07/11
Version 1.9 - Debug - 03/09/11
Version 2.0 - Debug - 03/10/11
Version 2.1 - Debug - 03/16/11
Version 2.2 - Debug - 03/17/11

Oracle create table contents:
BaseName VARCHAR2(10),
LogDateTime TIMESTAMP,
ReportIP VARCHAR2(20),
ReportIP_Long INTEGER,
RouterNum INTEGER,
RouterNum2 INTEGER,
RouterDateTime TIMESTAMP,
RouterMsecs INTEGER,
TimeZone VARCHAR2(5),
MessageType VARCHAR2(35),
SourceIP VARCHAR2(20),
SourceIPNum INTEGER,
SourcePort INTEGER,
DestinationIP VARCHAR2(20),
DestinationIPNum INTEGER,

72

DestinationPort INTEGER,
Token1 VARCHAR2(40),
Token2 VARCHAR2(40),
Token3 VARCHAR2(40),
Token4 VARCHAR2(40),
Token5 VARCHAR2(40),
Token6 VARCHAR2(40),
Token7 VARCHAR2(40),
Token8 VARCHAR2(40),
Token9 VARCHAR2(40),
Token10 VARCHAR2(40),
Token11 VARCHAR2(40),
Token12 VARCHAR2(40),
Token13 VARCHAR2(40),
Token14 VARCHAR2(40),
Token15 VARCHAR2(40),
Token16 VARCHAR2(40),
Token17 VARCHAR2(40),
Token18 VARCHAR2(40),
Token19 VARCHAR2(40),
Token20 VARCHAR2(40),
Token21 VARCHAR2(40),
Token22 VARCHAR2(40),
Token23 VARCHAR2(40),
Token24 VARCHAR2(40),
Token25 VARCHAR2(40),
Token26 VARCHAR2(40),
Token27 VARCHAR2(40),
Token28 VARCHAR2(40),
Token29 VARCHAR2(40),
Token30 VARCHAR2(40));

subroutine to convert IP dotted decimal to LONG integer
sub ip2long
{
 my $address = $_[0];
 (my $a, my $b, my $c, my $d) = split '\.', $address;
 my $decimal = $d + ($c * 256) + ($b * 256**2) + ($a * 256**3);
 return $decimal;
}

Subroutine to convert LONG integer to IP dotted decimal
sub dec2dot
{
 my $address = $_[0];
 my $d = $address % 256; $address -= $d; $address /= 256;

73

 my $c = $address % 256; $address -= $c; $address /= 256;
 my $b = $address % 256; $address -= $b; $address /= 256;
 my $a = $address;
 my $dotted="$a.$b.$c.$d";
 return $dotted;
}

Subroutine to check if month is legal
sub checkmonth
{
 my $month = $_[0];
 my $result = 0;
 if(($month eq "Jan") || ($month eq "Feb") || ($month eq "Mar") ||
 ($month eq "Apr") || ($month eq "May") || ($month eq "Jun") ||
 ($month eq "Jul") || ($month eq "Aug") || ($month eq "Sep") ||
 ($month eq "Oct") || ($month eq "Nov") || ($month eq "Dec"))
 {
 # its a valid month
 $result = 1;
 return $result;
 }
 else
 {
 # it is not a valid month
 $result = 0;
 return $result;
 }
 return $result;
}

Subroutine to check if string is a valid day
sub checkday
{
 my $day = $_[0];
 my $result = 0;

 # check to assure day is in range
 if(($day >= 1) && ($day <= 31))
 {
 # it is a valid day
 $result = 1;
 return $result;
 }
 else
 {
 # it is not a valid day

74

 $result = 0;
 return $result;
 }
 return $result;
}

Subroutine to check if string is a time
sub checktime
{
 my $time = $_[0];
 my $result = 0;

 # print "checktime: " . $time . "\n";

 (my $hour, my $minute, my $second) = split '\:', $time;

 # print "H: " . $hour . " M: " . $minute . " S: " . $second . "\n";

 # check to assure time is in range
 if(($hour >= 0) && ($hour <= 23) &&
 ($minute >= 0) && ($minute <= 59) &&
 ($second >= 0) && ($second <= 59))
 {
 # it is a valid time
 $result = 1;
 return $result;
 }
 else
 {
 # it is not a valid time
 $result = 0;
 return $result;
 }
 return $result;
}

Subroutine to check if string is a time with milliseconds
sub checkmtime
{
 my $time = $_[0];
 my $result = 0;
 my $isaperiod = ".";

 # print "checkmtime: " . $time . "\n";

 (my $hour, my $minute, my $second) = split '\:', $time;

75

 my $msecond = "";
 my $hasfraction = rindex $second,$isaperiod;
 if ($hasfraction eq -1)
 {
 # does not have a period, so no fraction
 $result = 0;
 return $result;
 }
 else
 {
 # does have a period, so we need to extract it
 $msecond = substr($second,-3);
 $second = substr($second,0,-4);

 }

 # print "H: " . $hour . " M: " . $minute . " S: " . $second . " Milli: " . $msecond . "\n";

 # check to assure time is in range
 if(($hour >= 0) && ($hour <= 23) &&
 ($minute >= 0) && ($minute <= 59) &&
 ($second >= 0) && ($second <= 59) &&
 ($msecond >= 0) && ($msecond <= 999))
 {
 # it is a valid time
 $result = 1;
 return $result;
 }
 else
 {
 # it is not a valid time
 $result = 0;
 return $result;
 }
 return $result;
}

Subroutine to check if string has a trailing colon
sub checktrailingcolon
{
 my $message = $_[0];
 my $result = 0;
 my $colon = ":";

 # get string length

76

 my $length = length $message;

 # valid message should have trailing colon
 my $found = index $message,$colon;
 # adjust for zero position string
 $found = $found + 1;

 # print "String Length: " . $length . " Colon Found at: " . $found . "\n";

 if($found ne $length)
 {
 $result = 0;
 return $result;
 }
 else
 {
 $result = 1;
 return $result;
 }
 return $result;
}

Subroutine to check if string is a valid time zone
sub checktimezone
{
 my $timezone = $_[0];
 my $result = 0;

 # check for trailing colon
 my $hastrailingcolon = checktrailingcolon($timezone);
 if($hastrailingcolon eq 1)
 {
 # verify time zone is valid eventually
 $result = 1;
 return $result;
 }
 else
 {
 # invalid time zone
 $result = 0;
 return $result;
 }
 return $result;
}

Subroutine to check if string is a message type

77

sub checkmessagetype
{
 my $message = $_[0];
 my $result = 0;
 my $colon = ":";
 my $percent = "%";

 # print "checkmessagetype: " . $message . "\n";

 # get string length
 my $length = length $message;

 # valid message should have leading percent
 my $foundpercent = index $message,$percent;

 # valid message should have trailing colon
 my $foundcolon = index $message,$colon;

 # print "String Length: " . $length . " Colon Found at: " . $foundcolon . " Percent Found at: " .
$foundpercent . "\n";

 if($foundcolon ne ($length-1))
 {
 $result = 0;
 return $result;
 }
 else
 {
 if($foundpercent eq 0)
 {
 $result = 1;
 return $result;
 }
 else
 {
 $result = 0;
 return $result;
 }
 }
 return $result;
}

sub checkmessagenumber
{
 my $message = $_[0];
 my $result = 0;

78

 # make sure this ends with a colon
 my $trailingcolon = checktrailingcolon($message);
 if($trailingcolon eq 1)
 {
 # it has a trailing colon
 }
 else
 {
 # no trailing colon
 $result = 0;
 return $result;
 }

 # now verify that it has only numbers
 # strip trailing colon
 $message = substr($message,0,-1);
 if($message =~ /^[+-]?\d+$/)
 {
 # it is a number
 $result = 1;
 return $result;
 }
 else
 {
 # it is not a number, but had a colon
 $result = 2;
 return $result;
 }
 return $result;
}

Subroutine to check if there are three dots in string
sub checkthreedots
{
 my $address = $_[0];
 my $result = 0;
 my $i = 0;
 my $found = 0;
 my $look = 1;
 my $dot = ".";

 # get string length
 my $length = length $address;

 # check to see if there are three dots in the string

79

 for($i = 1; $i <= 3; $i++)
 {
 $found = index $address,$dot,$found+1;
 if($found eq -1)
 {
 $result = 0;
 # print "checkthreedots: NO three dots! " . $address . "\n";
 return $result;
 }
 }
 $result = 1;
 # print "checkthreedots: YES three dots! " . $address . "\n";
 return $result;
}

Subroutine to check if string is a valid IP address
we are checking for 129.12.34.22 or (129.23.34.55)
sub checkIPAddress
{
 my $address = $_[0];
 my $result = 0;
 my $i = 0;
 my $found = 0;
 my $foundopen = 0;
 my $foundclose = 0;
 my $foundcomma = 0;
 my $look = 1;
 my $dot = ".";
 my $openparen = "(";
 my $closeparen = ")";
 my $comma = ",";

 # set result to OK
 $result = 1;

 # get string length
 my $length = length $address;

 # printf "checkIPaddress checking: " . $address . "\n";

 # check to see if there are three dots in the string
 for($i = 1; $i <= 3; $i++)
 {
 $found = index $address,$dot,$found+1;
 if($found eq -1)
 {

80

 $result = 0;
 return $result;
 }
 }

 # printf "checkIPaddress saw three dots! " . $address . "\n";

 # check to see if there is an open parenthesis
 $foundopen = index $address,$openparen;

 # check to see if there is an close parenthesis
 $foundclose = index $address,$closeparen;

 # see if there is a comma
 $foundcomma = index $address,$comma;

 # print "Open: " . $foundopen . " Close: " . $foundclose . " Comma: " . $foundcomma . "
Length: " . $length . "\n";

 # check for (IP address)
 my $endofstring = $length - 1;
 if(($foundopen eq 0) && ($foundclose eq $endofstring))
 {
 # print "Removing parenthesis\n";
 # yes, so remove leading and trailing parenthesis
 $result = 2;
 # strip out leading paren from IP address
 $address = substr($address,1);
 # strip out trailing paren
 chop $address;
 }
 else
 {
 if($foundcomma eq $endofstring)
 {
 $result = 3;
 # strip out trailing comma
 chop $address;
 }
 }

 (my $a, my $b, my $c, my $d) = split '\.', $address;

 if(($a =~ /^[+-]?\d+$/) && ($b =~ /^[+-]?\d+$/) && ($c =~ /^[+-]?\d+$/) && ($d =~
/^[+-]?\d+$/))
 {

81

 # it is a number
 }
 else
 {
 # it is not a number
 $result = 0;
 return $result;
 }

 # print "IP elements: " . $a . "." . $b . "." . $c . "." . $d . "\n";

 # check to assure each element is in range
 if(($a >= 0) && ($a <= 255) && ($b >= 0) && ($b <= 255) &&
 ($c >= 0) && ($c <= 255) && ($d >= 0) && ($d <= 255))
 {
 # it is a valid IP address
 # printf "checkIPaddress reports valid: " . $address . "\n";
 return $result;
 }
 else
 {
 # it is not a valid IP address
 $result = 0;
 return $result;
 }
 return $result;
}

Subroutine to check if string is a valid IP and port address combined
we are check for this type of string 207.133.169.118(57785)
can also be 201.22.33.44:23
sub checkIPPortAddress
{
 my $address = $_[0];
 my $result = 0;
 my $i = 0;
 my $found = 0;
 my $foundopen = 0;
 my $foundclose = 0;
 my $foundcolon = 0;
 my $look = 1;
 my $dot = ".";
 my $comma = ",";
 my $colon = ":";
 my $openparen = "(";

82

 my $closeparen = ")";
 my $ip;
 my $port;

 # get string length
 my $length = length $address;

 # printf "checkIPPortAddress checking: " . $address . "\n";

 # check to see if there are three dots in the string
 for($i = 1; $i <= 3; $i++)
 {
 $found = index $address,$dot,$found+1;
 if($found eq -1)
 {
 $result = 0;
 return $result;
 }
 }

 # printf "checkIPPortaddress saw three dots! " . $address . "\n";

 # check to see if there is an open parenthesis
 $foundopen = index $address,$openparen;

 # check to see if there is an close parenthesis
 $foundclose = index $address,$closeparen;

 # check to see if there is a colon
 $foundcolon = index $address,$colon;

 # print "Open: " . $foundopen . " Close: " . $foundclose . "Colon: " . $foundcolon . " Length: " .
$length . "\n";

 # check for (IP address)
 if(($foundopen eq 0) && ($foundclose eq ($length-1)))
 {
 # not in IP/port format
 $result = 0;
 return $result;
 }

 if(($foundopen ne -1) && ($foundclose ne -1))
 {
 # we have a valid IP/port in IP(Port) format

83

 # separate IP and port number
 $port = substr($address,$foundopen+1);
 # get rid of last character, if its a , we must chop again
 my $res = chop $port;
 if($res eq $comma)
 {
 chop $port;
 }
 $ip = substr($address, 0, $foundopen);
 }
 else
 {
 if($foundcolon ne -1)
 {
 # we have a valid IP/port in IP:port format
 # separate IP and port number
 $port = substr($address,$foundcolon+1);
 $ip = substr($address, 0, $foundcolon);
 }
 else
 {
 # no a valid IP/port
 $result = 0;
 return $result;
 }
 }

 # print "IP: " . $ip . " Port: " . $port . "\n";

 (my $a, my $b, my $c, my $d) = split '\.', $ip;

 # print "IP elements: " . $a . "." . $b . "." . $c . "." . $d . "\n";

 if(($a =~ /^[+-]?\d+$/) && ($b =~ /^[+-]?\d+$/) && ($c =~ /^[+-]?\d+$/) && ($d =~
/^[+-]?\d+$/))
 {
 # it is a number
 }
 else
 {
 # it is not a number
 $result = 0;
 return $result;
 }

 # check to assure each element is in range

84

 if(($a >= 0) && ($a <= 255) && ($b >= 0) && ($b <= 255) &&
 ($c >= 0) && ($c <= 255) && ($d >= 0) && ($d <= 255))
 {
 # it is a valid IP address
 $result = 1;
 # printf "checkIPPortaddress reports valid: " . $address . " IP: " . $ip . " Port: " . $port . "\n";
 return $result;
 }
 else
 {
 # it is not a valid IP address
 $result = 0;
 return $result;
 }
 return $result;
}

main programs starts here!

get the number of command line arguments
my $numArgs = $#ARGV + 1;

assure there are three arguments: infile base year
if($numArgs ne 3)
{
 # foreach $argnum (0 .. $#ARGV)
 # {
 # print "$ARGV[$argnum]\n";
 # }
 print "USAGE: parselog logfilename base year\n";
 # beep
 print "\a";
 exit(1);
}

extract infile, base, year
my $logfilename = $ARGV[0];
my $basename = $ARGV[1];
my $logyear = $ARGV[2];
create output file name
my $outfilename = $logfilename . ".csv";
print status message
print "Logname: " . $logfilename . " Base: " . $basename . " Year: " . $logyear . " Out File: " .
$outfilename . "\n";

open input file for read

85

open(INLOG, "<$logfilename") or die "Can't open input log file: $logfilename : $!";

open output file for write
open(OUTFILE, ">$outfilename") or die "Can't open output csv file: $outfilename : $!";

number of lines processed
my $count = 0;

maximum number of elements
my $maxelements = 0;

set up some string constants for comparison
my $isacolon = ":";
my $isaperiod = ".";
my $isanasterix = "*";
my $isapercent = "%";
my $isaopenparen = "(";
my $isacloseparen = ")";
my $isacomma = ",";

element counter
my $i = 0;

variables to identify is given character is in a substring
my $hascolon = 0;
my $hasaperiod = 0;
my $hasdots = 0;

variable to identity elements as bad
my $goodbase = 1;
my $goodlogdatetime = 1;
my $goodreportIP = 1;
my $goodmsgnum1 = 1;
my $goodmsgnum2 = 1;
my $goodrepdatetime = 1;
my $goodrepmilli = 1;
my $goodtimezone = 1;
my $goodmessagetype = 1;
my $goodsourceip = 1;
my $goodsourcedate = 1;
my $gooddestip = 1;
my $gooddestport = 1;

while (<INLOG>)
{
 my $line = $_;

86

 # variable used to identify the current line type
 my $linetype = 0;

 my $formatted = "";
 my $isvalidIP = 0;
 my $isvalidlogmonth = 0;
 my $isvalidlogday = 0;
 my $isvalidlogtime = 0;
 my $isvalidgenmonth = 0;
 my $isvalidgenday = 0;
 my $isvalidgentime = 0;
 my $logIPnum = 0;
 my $hastwomessagenumbers = 0;
 my $scrub = "";
 my $sourceip = 0;
 my $sourceport = 0;
 my $destip = 0;
 my $destport = 0;
 my $foundopen = 0;
 my $foundclose = 0;
 my $foundcolon = 0;
 my $gentimelength = 0;
 my $missingtimezone = 0;
 my $k = 0;

 # added 09 JAN 2012
 my @IPs = ();
 my @IPNums = ();
 my @Port = ();

 $count = $count + 1;

 # print "Processing line " . $count . "\n";

 $i = 1;

 # make sure signame array is clear for each line before filling
 for($k=1; $k<35; $k++)
 {
 $signame[$k] = "";
 }

 # split the line into tokens - I have seen as many as 33!
 foreach my $name (split(' ', $line))
 {
 $signame[$i] = $name;

87

 # printf("Element: " . $i . " Name: " . $name . " Value: " . $signame[$i] . "\n");
 $i++;
 }

 if($i > $maxelements)
 {
 $maxelements = $i;
 }

 # this chunk of code is used to determine line type
 $linetype = 0;

 # set logyear based upon current month
 if(($signame[1] eq "Jan") || ($signame[1] eq "Feb") || ($signame[1] eq "Mar"))
 {
 $logyear = "2011";
 }
 else
 {
 $logyear = "2010";
 }

 # check fourth element to assure its a valid IP address
 $isvalidIP = checkIPAddress($signame[4]);
 if($isvalidIP eq 1)
 {
 # it is a valid IP address
 $logIPnum = ip2long($signame[4]);

 # now check each of the basic elements of the line
 # Jan 1 00:00:25 132.35.194.5 233343: Jan 1 00:00:24.502 GMT: %LINK-4-ERROR:
FastEthernet0/21 is experiencing errors
 # Month Day Time IP MessageNum Month Day Time TimeZOne Message Type
Message_Elements

 $isvalidlogmonth = checkmonth($signame[1]);
 if($isvalidlogmonth eq 1)
 {
 # it is a valid log month
 }
 else
 {
 # invalid log month
 printf("Invalid log month: " . $signame[1] . "\n");
 }

88

 $isvalidlogday = checkday($signame[2]);
 if($isvalidlogday eq 1)
 {
 # it is a valid log day
 }
 else
 {
 # invalid log day
 printf("Invalid log day: " . $signame[2] . "\n");
 }
 $isvalidlogtime = checktime($signame[3]);
 if($isvalidlogtime eq 1)
 {
 # it is a valid log time
 }
 else
 {
 # invalid log time
 printf("Invalid log time: " . $signame[3] . "\n");
 }
 # check first message number
 $isvalidmsgnum1 = checkmessagenumber($signame[5]);
 if($isvalidmsgnum1 eq 1)
 {
 # it is a valid message number
 # strip trailing colon
 # $signame[5] = substr($signame[5],0,-1);
 chop $signame[5];
 }
 else
 {
 # Dec 21 16:14:47 138.13.215.203 last message repeated 3 times
 # this is a status line that starts at element 5
 $linetype = 5;

 # skip additional processing
 goto CHECKTOIPCHECKER;

 # invalid message number
 printf("Invalid message number: " . $signame[5] . "\n");

 }
 # check for a second message number
 $isvalidmsgnum2 = checkmessagenumber($signame[6]);
 if($isvalidmsgnum2 eq 1)
 {

89

 # it is a number - has two message numbers
 $hastwomessagenumbers = 1;
 $linetype = 3;

 # it is a valid message number
 # strip trailing colon
 # $signame[6] = substr($signame[6],0,-1);
 chop $signame[6];

 $isvalidgenmonth = checkmonth($signame[7]);
 if($isvalidgenmonth eq 1)
 {
 # it is a valid gen month
 }
 else
 {
 # invalid gen month
 # try again after striping first character as we have seen
 # Jan 4 21:17:32 131.47.101.2 1867: *Jan 4 21:36:43 UTC: %LINK-3-UPDOWN:
Interface FastEthernet0/16 changed state to down
 $tryagain = substr($signame[7],1);
 $isvalidgenmonth = checkmonth($tryagain);
 if($isvalidgenmonth eq 1)
 {
 # it is a valid gen month
 $signame[7] = substr($signame[7],1);
 }
 else
 {
 printf("Invalid gen month: " . $signame[7] . "\n");
 }
 }
 $isvalidgenday = checkday($signame[8]);
 if($isvalidgenday eq 1)
 {
 # it is a valid gen day
 }
 else
 {
 # invalid gen day
 printf("Invalid gen day: " . $signame[8] . "\n");
 }

 $isvalidgenmtime = checkmtime($signame[9]);
 if($isvalidgenmtime eq 1)
 {

90

 # it is a valid gen mtime
 }
 else
 {
 # invalid gen mtime
 $isvalidgentime = checktime($signame[9]);
 if($isvalidgentime eq 1)
 {
 # it is a valid gen time
 }
 else
 {
 printf("Invalid gen time: " . $signame[9] . " Line: " . $count . "\n");
 }
 }

 $gentimelength = length $signame[9];
 if(($gentimelength eq 9) || ($gentimelength eq 13))
 {
 # missing timezone because times HH:MM:SS: or HH:MM:SS:mm: results in no TZ
 # print "Missing TZ\n";
 $missingtimezone = 1;
 }
 # print "signame[9]: " . $signame[9] . "gentimelength: " . $gentimelength . "\n";

 if($missingtimezone eq 0)
 {
 # validate time zone
 $goodtimezone = checktimezone($signame[10]);
 if($goodtimezone eq 1)
 {
 # it is a valid timezone
 # strip out trailing : from time zone
 $signame[10] = substr($signame[10],0,-1);
 }
 else
 {
 # invalid timezone
 printf("Invalid time zone: " . $signame[10] . "\n");
 }
 # validate message type
 $goodmessagetype = checkmessagetype($signame[11]);
 if($goodmessagetype eq 1)
 {
 # it is a valid message type
 # strip out leading % from message type

91

 $signame[11] = substr($signame[11],1);
 # strip out trailing : from message type
 # $signame[11] = substr($signame[11],0,-1);
 chop $signame[11];
 }
 else
 {
 # invalid message type
 printf("Invalid message type: " . $signame[11] . " Line: " . $count . " Linetype: " .
$linetype . "\n");
 }
 }
 else
 {
 # validate message type
 $goodmessagetype = checkmessagetype($signame[10]);
 if($goodmessagetype eq 1)
 {
 # it is a valid message type
 # strip out leading % from message type
 $signame[10] = substr($signame[10],1);
 # strip out trailing : from message type
 # $signame[10] = substr($signame[10],0,-1);
 chop $signame[10];
 }
 else
 {
 # invalid message type
 printf("Invalid message type: " . $signame[10] . " Line: " . $count . " Linetype: " .
$linetype . "\n");
 }
 }
 }
 else
 {
 if($isvalidmsgnum2 eq 2)
 {
 # odd ball
 # example: Jan 4 00:35:53 131.47.103.1 35299: 1y8w: %SEC-6-IPACCESSLOGS: list
25 denied 131.47.102.47 3 packets
 $linetype = 2;
 }
 else
 {
 # no second message number, so default line type 0 is OK
 $hastwomessagenumbers = 0;

92

 $isvalidgenmonth = checkmonth($signame[6]);
 if($isvalidgenmonth eq 1)
 {
 # it is a valid gen month
 }
 else
 {
 # invalid gen month
 # try again after striping first character as we have seen
 # Jan 4 21:17:32 131.47.101.2 1867: *Jan 4 21:36:43 UTC: %LINK-3-UPDOWN:
Interface FastEthernet0/16 changed state to down
 $tryagain = substr($signame[6],1);
 $isvalidgenmonth = checkmonth($tryagain);
 if($isvalidgenmonth eq 1)
 {
 # it is a valid gen month
 $signame[6] = substr($signame[6],1);
 }
 else
 {
 # this is a status line that starts at element 6
 $linetype = 4;

 # skip additional processing
 goto CHECKTOIPCHECKER;

 # this is a status message
 # printf("Invalid gen month: " . $signame[6] . "\n");
 }
 }
 $isvalidgenday = checkday($signame[7]);
 if($isvalidgenday eq 1)
 {
 # it is a valid gen day
 }
 else
 {
 # invalid gen day
 printf("Invalid gen day: " . $signame[7] . "\n");
 }
 $isvalidgenmtime = checkmtime($signame[8]);
 if($isvalidgenmtime eq 1)
 {
 # it is a valid gen mtime
 }

93

 else
 {
 # invalid gen mtime
 $isvalidgentime = checktime($signame[8]);
 if($isvalidgentime eq 1)
 {
 # it is a valid gen time
 }
 else
 {
 printf("Invalid gen time: " . $signame[8] . " Line: " . $count . "\n");
 }
 }

 $gentimelength = length $signame[8];
 if(($gentimelength eq 9) || ($gentimelength eq 13))
 {
 # missing timezone because times HH:MM:SS: results in no TZ
 # print "Missing TZ\n";
 $missingtimezone = 1;
 }
 # print "signame[8]: " . $signame[8] . "gentimelength: " . $gentimelength . "\n";

 if($missingtimezone eq 0)
 {
 # validate time zone
 $goodtimezone = checktimezone($signame[9]);
 if($goodtimezone eq 1)
 {
 # it is a valid timezone
 # strip out trailing : from time zone
 $signame[9] = substr($signame[9],0,-1);
 }
 else
 {
 # invalid timezone
 printf("Invalid time zone: " . $signame[9] . "\n");
 }
 # validate message type
 $goodmessagetype = checkmessagetype($signame[10]);
 if($goodmessagetype eq 1)
 {
 # it is a valid message type
 # strip out leading % from message type
 $signame[10] = substr($signame[10],1);
 # strip out trailing : from message type

94

 # $signame[10] = substr($signame[10],0,-1);
 chop $signame[10];
 }
 else
 {
 # invalid message type
 printf("Invalid message type: " . $signame[10] . " Line: " . $count . " Linetype: " .
$linetype . "\n");
 }
 }
 else
 {
 # validate message type
 $goodmessagetype = checkmessagetype($signame[9]);
 if($goodmessagetype eq 1)
 {
 # it is a valid message type
 # strip out leading % from message type
 $signame[9] = substr($signame[9],1);
 # strip out trailing : from message type
 # $signame[9] = substr($signame[9],0,-1);
 chop $signame[9];
 }
 else
 {
 # invalid message type
 printf("Invalid message type: " . $signame[9] . " Line: " . $count . " Linetype: " .
$linetype . "\n");
 }
 }
 }
 }
 }
 else
 {
 # invalid IP address
 $linetype = 1;
 # printf("Invalid IP address: " . $signame[4] . " Line: " . $count . "\n");
 }

 # print "Linetype: " . $linetype . " HasTwoMessageNumbers: " . $hastwomessagenumbers .
"\n";

 my $routertime = "";
 my $routerfraction = "";
 my $routertimehastrailingcolon = 0;

95

 my $hasperiod = 0;
 my $haspercent = 0;
 my $hasfraction = "";
 my $hasanasterix = 0;
 my $timelength = 0;

 # extract router time and router fraction
 # remove : from time zone
 # remove % and : from message type
 if($hastwomessagenumbers eq 1)
 {
 # this has two message numbers so
 # month = signame[7]
 # day = signame[8]
 # time = signame[9]
 # print "Two message numbers Time: " . $signame[9] . "\n";
 $hasfraction = rindex $signame[9],$isaperiod;
 if ($hasfraction eq -1)
 {
 # does not have a period, so no fraction
 $routertime = $signame[9];

 # the time should be HH:MM:SS so length = 8
 $timelength = length $routertime;
 # print "Time Length: " . $timelength . "\n";
 # if there is a trailing colon, nuke it
 if($timelength eq 9)
 {
 # $routertime = substr($routertime,0,-1);
 chop $routertime;
 # flag this
 $routertimehastrailingcolon = 1;
 }

 $routerfraction = 0;
 }
 else
 {
 # does have a period, so we need to extract the time and the fraction

 #$routertime = substr($signame[9],0,-4);
 $routertime = substr($signame[9],0,$hasfraction);

 # print "Router Time: " . $routertime . "\n";

 # the time should be HH:MM:SS so length = 8

96

 $timelength = length $routertime;
 # print "Time Length: " . $timelength . "\n";
 # if there is a trailing colon, nuke it
 if($timelength eq 9)
 {
 # $routertime = substr($routertime,0,-1);
 chop $routertime;
 $routertimehastrailingcolon = 1;
 }

 #$routerfraction = substr($signame[9],-3);
 $routerfraction = substr($signame[9],$hasfraction+1);
 # print "Router Fraction: " . $routerfraction . "\n";

 # check for trailing colon
 $hascolon = rindex $routerfraction,$isacolon;
 if ($hascolon eq -1)
 {
 # no colon
 }
 else
 {
 # has a colon
 $routertimehastrailingcolon = 1;
 chop $routerfraction;
 }
 # print "Router Fraction: " . $routerfraction . "\n";
 }
 # make sure month does not have a leading *
 $hasanasterix = rindex $signame[7],$isanasterix;
 if ($hasanasterix eq -1)
 {
 # does not have an asterix, so do nothing
 }
 else
 {
 # does have an asterix, so we need to delete it
 $signame[7] = substr($signame[7],1);
 }
 }
 else
 {
 # this has one message number so
 # month = signame[6]
 # day = signame[7]
 # time = signame[8]

97

 $hasfraction = rindex $signame[8],$isaperiod;
 if ($hasfraction eq -1)
 {
 # does not have a period, so no fraction
 $routertime = $signame[8];

 # the time should be HH:MM:SS so length = 8
 $timelength = length $routertime;
 # print "Time Length: " . $timelength . "\n";
 # if there is a trailing colon, nuke it
 if($timelength eq 9)
 {
 # $routertime = substr($routertime,0,-1);
 chop $routertime;
 $routertimehastrailingcolon = 1;
 }
 $routerfraction = 0;
 }
 else
 {
 # does have a period, so we need to extract it
 # take first eight characters of time
 # $routertime = substr($signame[8],0,8);
 $routertime = substr($signame[8],0,$hasfraction);

 # the time should be HH:MM:SS so length = 8
 $timelength = length $routertime;
 # print "Time Length: " . $timelength . "\n";
 # if there is a trailing colon, nuke it
 if($timelength eq 9)
 {
 # $routertime = substr($routertime,0,-1);
 chop $routertime;
 $routertimehastrailingcolon = 1;
 }

 # $routerfraction = substr($signame[8],-3);
 $routerfraction = substr($signame[8],$hasfraction+1);
 # $fractionlength = length $routerfraction;

 # check for trailing colon
 $hascolon = rindex $routerfraction,$isacolon;
 if ($hascolon eq -1)
 {
 # no colon
 }

98

 else
 {
 # has a colon
 $routertimehastrailingcolon = 1;
 chop $routerfraction;
 }
 # print "Router Fraction: " . $routerfraction . "\n";
 }
 # make sure month does not have a leading *
 $hasanasterix = rindex $signame[6],$isanasterix;
 if ($hasanasterix eq -1)
 {
 # does not have an asterix, so do nothing
 }
 else
 {
 # does have an asterix, so we need to delete it
 $signame[6] = substr($signame[6],1);
 }
 }

 #for($j=1; $j<$i; $j++)
 #{
 # print "Element \$signame [" . $j . "]: " . $signame[$j] . " Length: " . (length $signame[$j]) .
"\n";
 #}

 CHECKTOIPCHECKER:

 # try to extract IP and port addresses from regular (non status) messages
 my $hasplainip = 0;
 my $hasipport = 0;
 my $hasthreedots = 0;
 my $ipsfound = 0;
 my $startlookingat = 0;

 if($hastwomessagenumbers eq 1)
 {
 # start looking at $signame[12] if TZ is there, otherwise at $signame[11]
 if($missingtimezone eq 0)
 {
 $startlookingat = 12;
 }
 else
 {
 $startlookingat = 11;

99

 }

 # for($j=12; $j<$i; $j++)
 for($j=$startlookingat; $j<$i; $j++)
 {
 # print "Checking \$signame [" . $j . "]: " . $signame[$j] . "\n";
 # check for three dots
 $hasthreedots = checkthreedots($signame[$j]);
 if($hasthreedots eq 1)
 {
 # print "Checking IP/Port for \$signame [" . $j . "]: " . $signame[$j] . "\n";
 # check for IP/Port address
 $hasipport = checkIPPortAddress($signame[$j]);
 if($hasipport eq 1)
 {
 # separate IP and Port
 # get IP Port string length
 my $IPPortlength = length $signame[$j];

 # check to see if there is an open parenthesis
 $foundopen = index $signame[$j],$isaopenparen;

 # check to see if there is an close parenthesis
 $foundclose = index $signame[$j],$isacloseparen;

 # check to see if there is a colon
 $foundcolon = index $signame[$j],$isacolon;

 # print "Open: " . $foundopen . " Close: " . $foundclose . " Colon: " . $foundcolon . "
Length: " . $IPPortlength . "\n";

 # check for (IP address)
 if(($foundopen eq 0) && ($foundclose eq ($IPPortlength-1)))
 {
 # not in IP/port format
 $result = 0;
 return $result;
 }

 if(($foundopen ne -1) && ($foundclose ne -1))
 {
 # we have a valid IP/port in IP(Port) format

 # separate IP and port number
 $port = substr($signame[$j],$foundopen+1);
 # get rid of last character, if its a , we must chop again

100

 my $res = chop $port;
 if($res eq $isacomma)
 {
 chop $port;
 }
 $ip = substr($signame[$j], 0, $foundopen);
 }
 else
 {
 if($foundcolon ne -1)
 {
 # we have a valid IP/port in IP:port format
 # separate IP and port number
 $port = substr($signame[$j],$foundcolon+1);
 $ip = substr($signame[$j], 0, $foundcolon);
 }
 else
 {
 # no a valid IP/port
 print "Error: Cannot find IP/Port: " . $signame[$j] ."\n";
 }
 }

 # print "IP: " . $ip . " Port: " . $port . "\n";

 # found ip/port address
 push(@IPs,"$ip");
 push(@IPNums,ip2long($ip));
 push(@Port,$port);
 $ipsfound = $ipsfound+1;
 }
 else
 {
 #print "Checking IP for \$signame [" . $j . "]: " . $signame[$j] . "\n";
 # not a IP/Port, so check for plain IP
 $hasplainip = checkIPAddress($signame[$j]);
 if($hasplainip eq 1)
 {
 # found ip address
 push(@IPs,$signame[$j]);
 push(@IPNums,ip2long($signame[$j]));
 # push a null instead of 0
 push(@Port,"");
 $ipsfound = $ipsfound+1;
 }
 else

101

 {
 if($hasplainip eq 2)
 {
 # yes, but surround by parenthesis so remove leading and trailing parenthesis
 # strip out leading (from IP address
 $signame[$j] = substr($signame[$j],1);
 # strip out trailing)
 chop $signame[$j];
 push(@IPs,$signame[$j]);
 push(@IPNums,ip2long($signame[$j]));
 # push a null instead of 0
 push(@Port,"");
 $ipsfound = $ipsfound+1;
 }
 else
 {
 if($hasplainip eq 3)
 {
 # yes, but ends in a comma so remove it
 # strip out trailing ,
 chop $signame[$j];
 push(@IPs,$signame[$j]);
 push(@IPNums,ip2long($signame[$j]));
 # push a null instead of 0
 push(@Port,"");
 $ipsfound = $ipsfound+1;
 }
 else
 {
 # not an IP or IP/Port
 }
 }
 }
 }
 }
 }
 }
 else
 {
 # start looking at $signame[11] if TZ is there, otherwise at $signame[10]
 if($missingtimezone eq 0)
 {
 $startlookingat = 11;
 }
 else
 {

102

 $startlookingat = 10;
 }

 # for($j=11; $j<$i; $j++)
 for($j=$startlookingat; $j<$i; $j++)
 {
 # print "Inside for loop STARTLOOKING:" . $startlookingat . " J:" . $j . " I:" . $i .
"\n";
 # print "Checking \$signame [" . $j . "]: " . $signame[$j] . "\n";
 # check for three dots
 $hasthreedots = checkthreedots($signame[$j]);
 if($hasthreedots eq 1)
 {
 # print "Checking IP/Port for \$signame [" . $j . "]: " . $signame[$j] . "\n";
 # check for IP/Port address
 $hasipport = checkIPPortAddress($signame[$j]);
 # print "Before test hasipport: " . $hasipport . "\n";
 if($hasipport eq 1)
 {
 # get IP Port string length
 my $IPPortlength = length $signame[$j];

 # check to see if there is an open parenthesis
 $foundopen = index $signame[$j],$isaopenparen;

 # check to see if there is an close parenthesis
 $foundclose = index $signame[$j],$isacloseparen;

 # check to see if there is a colon
 $foundcolon = index $signame[$j],$isacolon;

 # print "Open: " . $foundopen . " Close: " . $foundclose . " Colon: " .
$foundcolon . " Length: " . $IPPortlength . "\n";

 # check for (IP address)
 if(($foundopen eq 0) && ($foundclose eq ($IPPortlength-1)))
 {
 # not in IP/port format
 $result = 0;
 return $result;
 }

 if(($foundopen ne -1) && ($foundclose ne -1))
 {
 # we have a valid IP/port in IP(Port) format

103

 # separate IP and port number
 $port = substr($signame[$j],$foundopen+1);
 # get rid of last character, if its a , we must chop again
 my $res = chop $port;
 if($res eq $isacomma)
 {
 chop $port;
 }
 $ip = substr($signame[$j], 0, $foundopen);
 }
 else
 {
 if($foundcolon ne -1)
 {
 # we have a valid IP/port in IP:port format
 # separate IP and port number
 $port = substr($signame[$j],$foundcolon+1);
 $ip = substr($signame[$j], 0, $foundcolon);
 }
 else
 {
 # no a valid IP/port
 print "Error: Cannot find IP/Port: " . $signame[$j] ."\n";
 }
 }

 # print "Found IPPort IP: " . $ip . " Port: " . $port . "\n";

 # found ip/port address
 push(@IPs,"$ip");
 push(@IPNums,ip2long($ip));
 push(@Port,$port);
 $ipsfound = $ipsfound+1;
 }
 else
 {
 # print "Checking Plain IP for \$signame [" . $j . "]: " . $signame[$j] . "\n";
 # not a IP/Port, so check for plain IP
 $hasplainip = checkIPAddress($signame[$j]);
 # print "J: " . $j . " signame[" . $j . "]: " . $signame[$j] . "hasPlainIP: " . $hasplainip .
"\n";
 if($hasplainip eq 1)
 {
 # found ip address
 push(@IPs,$signame[$j]);
 push(@IPNums,ip2long($signame[$j]));

104

 # push a null instead of 0
 push(@Port,"");
 $ipsfound = $ipsfound+1;
 }
 else
 {
 if($hasplainip eq 2)
 {
 # yes, but surround by parenthesis so remove leading and trailing parenthesis
 # strip out leading (from IP address
 $signame[$j] = substr($signame[$j],1);
 # strip out trailing)
 chop $signame[$j];
 push(@IPs,$signame[$j]);
 push(@IPNums,ip2long($signame[$j]));
 # push a null instead of 0
 push(@Port,"");
 $ipsfound = $ipsfound+1;
 }
 else
 {
 if($hasplainip eq 3)
 {
 # yes, but ends in a comma so remove it
 # strip out trailing ,
 chop $signame[$j];
 push(@IPs,$signame[$j]);
 push(@IPNums,ip2long($signame[$j]));
 # push a null instead of 0
 push(@Port,"");
 $ipsfound = $ipsfound+1;
 }
 else
 {
 # not an IP or IP/Port
 }
 }
 }
 }
 }
 else
 {
 # not a candidate IP
 }
 }
 }

105

 # print "I found " . $ipsfound . " IP addresses\n";
 # for($j=0; $j<$ipsfound; $j++)
 # {
 # print "Element [" . $j . "] IP String: " . $IPs[$j] . " IP Num: " . $IPNums[$j] . " Port: " .
$Port[$j] . "\n";
 # }
 # print "Linetype: " . $linetype . "\n";

 # this chunk of code is used to create the outline based upon the identified line type
 if($linetype eq 1)
 {
 # linetype 1 - missing IP address, so it is a status message
 # example: Jan 4 00:35:53 ..

 # build the output string
 # base ,
 $formatted = $basename . ",";
 # log server day-month-year HH:MM:SS
 $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " . $signame[3] .
",";
 # NULL IP in dotted decimal, NULL IP unsigned long,
 $formatted = $formatted . ",,";
 # NULL router message, NULL router message 2
 $formatted = $formatted . ",,";
 # NULL date/time, NULL Fraction
 $formatted = $formatted . ",,";
 # NULL Time Zone
 $formatted = $formatted . ",";
 # Message Type
 $formatted = $formatted . "Status,";
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";
 # NULL Source port
 $formatted = $formatted . ",";
 # NULL Destination IP in dotted decimal, NULL Destination IP in long
 $formatted = $formatted . ",,";
 # NULL Destination port
 $formatted = $formatted . ",";
 # rest of message seperated by commas until we figure out all message formats
 for($j=4; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }

106

 $formatted = $formatted . "\n";
 }
 else
 {
 if($linetype eq 2)
 {
 # linetype 2 - bad second message number
 # example: Jan 4 00:35:53 131.47.103.1 35299: 1y8w: %SEC-6-IPACCESSLOGS: list 25
denied 131.47.102.47 3 packets

 # build the output string
 # base ,
 $formatted = $basename . ",";
 # log server day-month-year HH:MM:SS
 $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " . $signame[3]
. ",";
 # NULL IP in dotted decimal, NULL IP unsigned long,
 $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
 # NULL router message, NULL router message 2
 $formatted = $formatted . $signame[5] . ",,";
 # NULL date/time, NULL Fraction
 $formatted = $formatted . ",,";
 # NULL Time Zone
 $formatted = $formatted . ",";
 # Message Type
 # strip out any %
 $haspercent = rindex $signame[7],$isapercent;
 if($haspercent eq -1)
 {
 # no percent sign
 }
 else
 {
 # get rid of leading % sign
 $signame[7] = substr($signame[7],1);
 }
 # strip out trailing colon
 #$signame[7] = substr($signame[7],0,-1);
 chop $signame[7];
 $formatted = $formatted . $signame[7] . ",";
 if($ipsfound > 0)
 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
 # Source port
 $formatted = $formatted . $Port[0] . ",";

107

 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";
 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }
 # rest of message seperated by commas until we figure out all message formats
 for($j=4; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 else
 {
 if($linetype eq 3)
 {
 # linetype 3 - two message numbers
 # example: Dec 30 12:00:02 131.47.120.11 966247: 966244: Dec 30 12:00:01.894 GMT:
%SEC-6-IPACCESSLOGS: list 13 permitted 131.15.50.254 1 packet
 # build the output string
 # base ,
 $formatted = $basename . ",";
 # log server day-month-year HH:MM:SS
 $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " .
$signame[3] . ",";
 # IP in dotted decimal, IP unsigned long,
 $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
 # router message, NULL router message 2
 $formatted = $formatted . $signame[5] . "," . $signame[6] . ",";

108

 # reporting router day-month-year HH:MM:SS,millisecond
 $formatted = $formatted . $signame[8] . "-" . $signame[7] . "-" . $logyear . " " . $routertime
. "," . $routerfraction . ",";
 # Time Zone
 if($routertimehastrailingcolon eq 1)
 {
 # print null time zone and adjust all subsequent indexes by -1
 $formatted = $formatted . ",";
 }
 else
 {
 # print time zone
 $formatted = $formatted . $signame[10] . ",";
 }

 if($routertimehastrailingcolon eq 1)
 {
 # adjust index by -1

 # Message Type
 # strip out any %
 # ALREADY STRIPPED
 #$haspercent = rindex $signame[11],$isapercent;
 #if($haspercent eq -1)
 #{
 # # no percent sign
 #}
 #else
 #{
 # # get rid of leading % sign
 # $signame[11] = substr($signame[11],1);
 #}
 # strip out trailing colon
 #$signame[11] = substr($signame[11],0,-1);
 $formatted = $formatted . $signame[11] . ",";
 if($ipsfound > 0)
 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
 # Source port
 $formatted = $formatted . $Port[0] . ",";
 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";

109

 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }
 # rest of message seperated by commas until we figure out all message formats
 # for($j=10; $j<$i; $j++)
 for($j=4; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 else
 {
 # do not adjust index

 # Message Type
 # strip out any %
 # ALREADY STRIPPED
 #$haspercent = rindex $signame[11],$isapercent;
 #if($haspercent eq -1)
 #{
 # # no percent sign
 #}
 #else
 #{
 # # get rid of leading % sign
 # $signame[11] = substr($signame[11],1);
 #}
 # strip out trailing colon
 # $signame[11] = substr($signame[11],0,-1);
 $formatted = $formatted . $signame[11] . ",";
 if($ipsfound > 0)

110

 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
 # Source port
 $formatted = $formatted . $Port[0] . ",";
 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";
 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }
 # rest of message seperated by commas until we figure out all message formats
 # for($j=12; $j<$i; $j++)
 for($j=4; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 }
 else
 {
 if($linetype eq 4)
 {
 # linetype 4
 # example: Jan 21 12:27:25 132.47.136.249 19: Cisco IOS Software, C3750 Software
(C3750-IPBASEK9-M), Version 12.2(50)SE3, RELEASE SOFTWARE (fc1)
 # build the output string
 # base ,
 $formatted = $basename . ",";

111

 # log server day-month-year HH:MM:SS
 $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " .
$signame[3] . ",";
 # IP in dotted decimal, IP unsigned long,
 $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
 # router message num, NULL router message 2
 $formatted = $formatted . $signame[5] . ",,";
 # NULL date/time, NULL Fraction
 $formatted = $formatted . ",,";
 # NULL Time Zone
 $formatted = $formatted . ",";
 # Message Type
 $formatted = $formatted . "Status,";

 if($ipsfound > 0)
 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
 # Source port
 $formatted = $formatted . $Port[0] . ",";
 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";
 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }

 # NULL Source IP in dotted decimal, NULL Source IP in long
 # $formatted = $formatted . ",,";
 # NULL Source port

112

 # $formatted = $formatted . ",";
 # NULL Destination IP in dotted decimal, NULL Destination IP in long
 # $formatted = $formatted . ",,";
 # NULL Destination port
 # $formatted = $formatted . ",";

 # rest of message seperated by commas until we figure out all message formats
 for($j=4; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 else
 {
 if($linetype eq 5)
 {
 # linetype 5
 # build the output string
 # base ,
 $formatted = $basename . ",";
 # log server day-month-year HH:MM:SS
 $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " .
$signame[3] . ",";
 # IP in dotted decimal, IP unsigned long,
 $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
 # NULL router message num, NULL router message 2
 $formatted = $formatted . ",,";
 # NULL date/time, NULL Fraction
 $formatted = $formatted . ",,";
 # NULL Time Zone
 $formatted = $formatted . ",";
 # Message Type
 $formatted = $formatted . "Status,";

 if($ipsfound > 0)
 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
 # Source port
 $formatted = $formatted . $Port[0] . ",";
 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";

113

 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }

 # NULL Source IP in dotted decimal, NULL Source IP in long
 # $formatted = $formatted . ",,";
 # NULL Source port
 # $formatted = $formatted . ",";
 # NULL Destination IP in dotted decimal, NULL Destination IP in long
 # $formatted = $formatted . ",,";
 # NULL Destination port
 # $formatted = $formatted . ",";

 # rest of message seperated by commas until we figure out all message formats
 # for($j=5; $j<$i; $j++)
 for($j=4; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 else
 {
 # default $linetype = 0
 # example: Dec 30 12:00:30 131.47.102.1 34106: Dec 30 12:00:29 GMT: %SEC-6-
IPACCESSLOGS: list 13 permitted 131.15.50.254 14 packets

 # build the output string
 # base ,
 $formatted = $basename . ",";
 # log server day-month-year HH:MM:SS

114

 $formatted = $formatted . $signame[2] . "-" . $signame[1] . "-" . $logyear . " " .
$signame[3] . ",";
 # IP in dotted decimal, IP unsigned long,
 $formatted = $formatted . $signame[4] . "," . $logIPnum . ",";
 # router message, NULL router message 2
 $formatted = $formatted . $signame[5] . ",,";
 # reporting router day-month-year HH:MM:SS,millisecond
 $formatted = $formatted . $signame[7] . "-" . $signame[6] . "-" . $logyear . " " .
$routertime . "," . $routerfraction . ",";

 # Time Zone
 if($routertimehastrailingcolon eq 1)
 {
 # print null time zone and adjust all subsequent indexes by -1
 $formatted = $formatted . ",";
 }
 else
 {
 # print time zone
 $formatted = $formatted . $signame[9] . ",";
 }

 if($routertimehastrailingcolon eq 1)
 {
 # adjust index by -1

 # Message Type
 # strip out any %
 # ALREADY STRIPPED
 #$haspercent = rindex $signame[10],$isapercent;
 #if($haspercent eq -1)
 #{
 # # no percent sign
 #}
 #else
 #{
 # # get rid of leading % sign
 # $signame[10] = substr($signame[10],1);
 #}
 # strip out trailing colon
 #$signame[10] = substr($signame[10],0,-1);
 $formatted = $formatted . $signame[10] . ",";
 if($ipsfound > 0)
 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";

115

 # Source port
 $formatted = $formatted . $Port[0] . ",";
 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";
 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }
 # rest of message seperated by commas until we figure out all message formats
 for($j=10; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 else
 {
 # do not adjust index

 # Message Type
 # strip out any %
 # ALREADY STRIPPED
 #$haspercent = rindex $signame[10],$isapercent;
 #if($haspercent eq -1)
 #{
 # # no percent sign
 #}
 #else
 #{
 # # get rid of leading % sign

116

 # $signame[10] = substr($signame[10],1);
 #}
 # strip out trailing colon
 #$signame[10] = substr($signame[10],0,-1);
 $formatted = $formatted . $signame[10] . ",";
 if($ipsfound > 0)
 {
 # Source IP in dotted decimal, Source IP in long
 $formatted = $formatted . $IPs[0] . "," . $IPNums[0] . ",";
 # Source port
 $formatted = $formatted . $Port[0] . ",";
 }
 else
 {
 # NULL Source IP in dotted decimal, NULL Source IP in long
 $formatted = $formatted . ",,";
 # NULL Source port
 $formatted = $formatted . ",";
 }
 if($ipsfound > 1)
 {
 # Dest IP in dotted decimal, Dest IP in long
 $formatted = $formatted . $IPs[1] . "," . $IPNums[1] . ",";
 # Dest port
 $formatted = $formatted . $Port[1] . ",";
 }
 else
 {
 # NULL Dest IP in dotted decimal, NULL Dest IP in long
 $formatted = $formatted . ",,";
 # NULL Dest port
 $formatted = $formatted . ",";
 }
 # rest of message seperated by commas until we figure out all message formats
 for($j=11; $j<$i; $j++)
 {
 $formatted = $formatted . "," . $signame[$j];
 }
 $formatted = $formatted . "\n";
 }
 }
 }
 }
 }
 }
 print OUTFILE $formatted

117

}

example conversion from dotted decimal
dotted decimal 132.35.194.5
binary 10000100001000111100001000000101
decimal 2216935941
hexidecimal 8423C205

printf ("Processed: " . $count . " lines. Maximum Elements: " . $maxelements . ".\n");

close (OUTFILE);

close(INLOG);

exit(0);

118

APPENDIX D

CreateLogMessage.SQL

Description

This file creates the Oracle database tables named LogMessage and IPToCountry.

spool CreateNewLogMessage.log

REM Set environmental variables
SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 300
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Nuke tables if they exist
DROP SEQUENCE Log_seq;
DROP TRIGGER Log_trigger;
ALTER TABLE LOGMESSAGE DROP CONSTRAINT log_message_nn;
ALTER TABLE NEWLOGMESSAGE DROP CONSTRAINT log_message_nn;
DROP TABLE LOGMESSAGE CASCADE CONSTRAINTS;
DROP TABLE IPTOCOUNTRY CASCADE CONSTRAINTS;

REM Create LOGMESSAGE table
CREATE TABLE LOGMESSAGE (
 LogID INTEGER NOT NULL,
 BaseName VARCHAR2(20),
 LogDateTime TIMESTAMP,
 ReportIP VARCHAR2(20),
 ReportIPNum INTEGER,
 RouterNum INTEGER,
 RouterNum2 INTEGER,
 RouterDateTime TIMESTAMP,
 RouterMsecs INTEGER,
 TimeZone VARCHAR2(6),
 MessageType VARCHAR2(35),
 SourceIP VARCHAR2(20),
 SourceIPNum INTEGER,
 SourcePort INTEGER,
 DestinationIP VARCHAR2(20),
 DestinationIPNum INTEGER,
 DestinationPort INTEGER,

119

 Token1 VARCHAR2(80),
 Token2 VARCHAR2(80),
 Token3 VARCHAR2(80),
 Token4 VARCHAR2(80),
 Token5 VARCHAR2(80),
 Token6 VARCHAR2(80),
 Token7 VARCHAR2(80),
 Token8 VARCHAR2(80),
 Token9 VARCHAR2(80),
 Token10 VARCHAR2(80),
 Token11 VARCHAR2(80),
 Token12 VARCHAR2(80),
 Token13 VARCHAR2(80),
 Token14 VARCHAR2(80),
 Token15 VARCHAR2(80),
 Token16 VARCHAR2(80),
 Token17 VARCHAR2(80),
 Token18 VARCHAR2(80),
 Token19 VARCHAR2(80),
 Token20 VARCHAR2(80),
 Token21 VARCHAR2(80),
 Token22 VARCHAR2(80),
 Token23 VARCHAR2(80),
 Token24 VARCHAR2(80),
 Token25 VARCHAR2(80),
 Token26 VARCHAR2(80),
 Token27 VARCHAR2(80),
 Token28 VARCHAR2(80),
 Token29 VARCHAR2(80),
 Token30 VARCHAR2(80),
 CONSTRAINT log_message_nn PRIMARY KEY (LogID));

REM Create the sequence
CREATE SEQUENCE Log_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER Log_trigger
BEFORE INSERT ON LOGMESSAGE
FOR EACH ROW
WHEN (new.LogID IS NULL)
BEGIN
 SELECT Log_seq.NEXTVAL
 INTO :new.LogID

120

 FROM dual;
END;
/

REM Create IPTOCOUNTRY Table
CREATE TABLE IPTOCOUNTRY
 (ip_from NUMBER(32,0)
 , ip_to NUMBER(32,0)
 , country_code2 VARCHAR2(2)
 , country_code3 VARCHAR2(3)
 , country_name VARCHAR2(50)
) ;

spool off;

exit;

121

APPENDIX E

LogMessage Table Structure

LogMessage

.!.2g!Q

Base Name
LogDateTime
ReportiP
ReportiPNum
RouterNum
RouterNum2
RouterDateTime
RouterMsecs
TimeZone
Message Type
SourceiP
SourceiPNum
SourcePort
DestinationiP
DestinationiPNum
Destination Port
Tokenl
Token2
Token3
Token4
TokenS
Token6
Token7
TokenS
Token9
TokenlO
Tokenll
Token12
Token13
Token14
TokenlS
Token16
Token17
Token18
Token19
Token20
Token21
Token22
Token23
Token24
Token25
Token26
Token27
Token28
Token29
Token30

122

APPENDIX F

IPToCountry Table Structure

123

APPENDIX G

Doit.BAT

Description

This file invokes the PERL parser for the log files from a particular USAF base, and invokes the
CTL file that loads the resultant CSV file into the LogMessage table.

REM Edit “pathname\basename\parselog.pl” basename

del *.csv
for %%A in (cisco*.log) do perl "D:\INOSCWest561st\basename\parselog.pl" %%A basename
2011
copy *.csv all-basename.log.csv
sqlldr user1/pass1 loadbasename.ctl
type loadbasename.log

124

APPENDIX H

Redoit.BAT

Description

 This file is the overall control batch file. It invokes CreateLogMessage.SQL,
LoadIPCountry.CTL and Doit.BAT. This file displays the start time and end time. It also logs-
in to Oracle using sqlplus with username and password and calls the CreateLogMessage.SQL
file. Then the LoadIPCountry.CTL is invoked using sqlldr with the same username and
password. A loadipcountry.log is generated. After all the doit batch files for each base are
executed the finished time is displayed and a redoit.log file is generated. When executing
redoit.bat, there maybe messages stating “Commit point reached - logical record count...”, this is
normal and not to be concerned about. This batch process can take up to several hours
depending on the system. Below is the actual batch file:

echo Starting at %time%
sqlplus username/password @CREATELOGMESSAGE
sqlldr username/password loadipcountry.ctl
type loadipcountry.log

REM Change directory to pathname\Basename

cd C:\INOSCWest561st\Altus
call doit
cd C:\INOSCWest561st\Andersen
call doit
cd C:\INOSCWest561st\CapeCod
call doit
cd C:\INOSCWest561st\Cavalier
call doit
cd C:\INOSCWest561st\Charleston
call doit
cd C:\INOSCWest561st\Clear
call doit
cd C:\INOSCWest561st\Columbus
call doit
cd C:\INOSCWest561st\DiegoGarcia
call doit
cd C:\INOSCWest561st\Dover
call doit
cd C:\INOSCWest561st\Elmendorf
call doit
cd C:\INOSCWest561st\Fairchild
call doit
cd C:\INOSCWest561st\FEWarren

125

call doit
cd C:\INOSCWest561st\Guam
call doit
cd C:\INOSCWest561st\Hickam
call doit
cd C:\INOSCWest561st\Kadena
call doit
cd C:\INOSCWest561st\KaenaPoint
call doit
cd C:\INOSCWest561st\Keesler
call doit
cd C:\INOSCWest561st\Kunsan
call doit
cd C:\INOSCWest561st\Lackland
call doit
cd C:\INOSCWest561st\Laughlin
call doit
cd C:\INOSCWest561st\LosAngeles
call doit
cd C:\INOSCWest561st\Luke
call doit
cd C:\INOSCWest561st\MacDill
call doit
cd C:\INOSCWest561st\Malmstrom
call doit
cd C:\INOSCWest561st\McChord
call doit
cd C:\INOSCWest561st\McConnell
call doit
cd C:\INOSCWest561st\McGuire
call doit
cd C:\INOSCWest561st\NewBoston
call doit
cd C:\INOSCWest561st\Oakhanger
call doit
cd C:\INOSCWest561st\Onizuka
call doit
cd C:\INOSCWest561st\Osan
call doit
cd C:\INOSCWest561st\Patrick
call doit
cd C:\INOSCWest561st\Pope
call doit
cd C:\INOSCWest561st\Randolph
call doit
cd C:\INOSCWest561st\Randolph-NOSC

126

call doit
cd C:\INOSCWest561st\Scott-NOSC
call doit
cd C:\INOSCWest561st\Sheppard
call doit
cd C:\INOSCWest561st\Thule
call doit
cd C:\INOSCWest561st\Travis
call doit
cd C:\INOSCWest561st\Tyndall
call doit
cd C:\INOSCWest561st\USAFA
call doit
cd C:\INOSCWest561st\Vandenberg
call doit
cd C:\INOSCWest561st\Yokota
call doit
echo Finished at %time%
type redoit.log

127

APPENDIX I

LoadIPCountry.CTL

Description

Loads the IP ranges of each country into the “IPToCountry” table.

REM cd to pathname\ip-to-country.csv'

load data
 infile 'D:Country IPs\ip-to-country.csv'
 into table IPTOCOUNTRY
 fields terminated by "," optionally enclosed by '"'
 TRAILING NULLCOLS
 (IP_FROM, IP_TO, COUNTRY_CODE2, COUNTRY_CODE3, COUNTRY_NAME)

128

APPENDIX J

LoadBasename.CTL

Description

Loads the tokens in the CSV file into the “LogMessage” table. Each base has its own
load<basename>.CTL file, specific to the path name for each base.

REM Edit “pathname\all-basenamelog.csv”

load data
 infile 'D:\INOSCWest561st\ basename \all-basename.log.csv'
 into table LOGMESSAGE
 append
 fields terminated by "," optionally enclosed by '"'
 TRAILING NULLCOLS

(BaseName, LogDateTime DATE 'DD-MON-YYYY HH24.MI.SS', ReportIP, ReportIPNum,
RouterNum, RouterNum2, RouterDateTime DATE 'DD-MON-YYYY HH24.MI.SS',
RouterMsecs, TimeZone, MessageType, SourceIP, SOurceIPNum, SourcePort,
DestinationIP, DestinationIPNum, DestinationPort, Token1, Token2,Token3, Token4,
Token5, Token6, Token7, Token8, Token9, Token10,
Token11, Token12, Token13, Token14, Token15, Token16, Token17, Token18, Token19,
Token20, Token21, Token22, Token23, Token24, Token25, Token26, Token27, Token28,
Token29, Token30)

129

APPENDIX K

BuildSummaryTables.SQL

Description

This script builds the normalized tables.

spool BuildSummaryTables.log

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 300
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Nuke tables in case they exist
DROP TABLE TTIMEZONE CASCADE CONSTRAINTS;
DROP TABLE TBASENAME CASCADE CONSTRAINTS;
DROP TABLE TREPORTIP CASCADE CONSTRAINTS;
DROP TABLE TMESSAGE_TYPE CASCADE CONSTRAINTS;
DROP TABLE TSOURCE_IP CASCADE CONSTRAINTS;
DROP TABLE TDESTINATION_IP CASCADE CONSTRAINTS;
DROP TABLE TSOURCEPORTS CASCADE CONSTRAINTS;
DROP TABLE TDESTPORTS CASCADE CONSTRAINTS;

REM Create TTIMEZONE table
CREATE TABLE TTIMEZONE (
 TZ_ID INTEGER NOT NULL PRIMARY KEY,
 TZ VARCHAR(6));

REM Create TBASENAME table
CREATE TABLE TBASENAME (
 Base_ID INTEGER NOT NULL PRIMARY KEY,
 BaseName VARCHAR(30));

REM Create TREPORTIP table
CREATE TABLE TREPORTIP (
 REPORTIP_ID INTEGER NOT NULL PRIMARY KEY,
 ReportIP VARCHAR2(20),
 ReportIPNum INTEGER);

REM Create TMESSAGE_TYPE table
CREATE TABLE TMESSAGE_TYPE (

130

 MsgType_ID INTEGER NOT NULL PRIMARY KEY,
 MsgType VARCHAR2(35));

REM Create TSOURCE_IP table
CREATE TABLE TSOURCE_IP (
 SourceIP_ID INTEGER NOT NULL PRIMARY KEY,
 SourceIP VARCHAR2(20),
 SourceIPNum INTEGER);

REM Create TSOURCEPORTS table
CREATE TABLE TSOURCEPORTS (
 SourcePort_ID INTEGER NOT NULL PRIMARY KEY,
 PortNum INTEGER,
 PortDesc VARCHAR(30));

REM Create TDESTINATION_IP table
CREATE TABLE TDESTINATION_IP (
 DestIP_ID INTEGER NOT NULL PRIMARY KEY,
 DestIP VARCHAR2(20),
 DestIPNum INTEGER);

REM Create TDESTPORTS table
CREATE TABLE TDESTPORTS (
 DestPort_ID INTEGER NOT NULL PRIMARY KEY,
 PortNum INTEGER,
 PortDesc VARCHAR(30));

spool off;

131

APPENDIX L

PopTZ.sql

Description

This populates TTIMEZONE table

spool PopTTZ.log

REM Populate TTIMEZONE table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTTIMEZONE CASCADE CONSTRAINTS;
DROP SEQUENCE TIMEZONE_seq;
DROP TRIGGER TIMEZONE_trigger;

REM Now we want to populate the TTIMEZONE table

REM First create a VIEW of daily logs to get a list of distinct TIMEZONE from
LOGMESSAGE table
CREATE VIEW VTTIMEZONE
 AS
 SELECT DISTINCT TIMEZONE FROM LOGMESSAGE WHERE TIMEZONE IS NOT
NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE TIMEZONE_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER TIMEZONE_trigger
BEFORE INSERT ON TTIMEZONE

132

FOR EACH ROW
WHEN (new.TZ_ID IS NULL)
BEGIN
 SELECT TIMEZONE_seq.NEXTVAL
 INTO :new.TZ_ID
 FROM dual;
END;
/

REM Now, lets populate the TTIMEZONE table using the VTTIMEZONE view
INSERT INTO TTIMEZONE (TZ) SELECT TIMEZONE FROM VTTIMEZONE;

SELECT * FROM TTIMEZONE;

SELECT COUNT(*) FROM TTIMEZONE;

spool off;

133

popTBasename.sql

Description

This populates the TBASENAME table.

spool popTBasename.log

REM Populate TBASENAME table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTBASENAME CASCADE CONSTRAINTS;
DROP SEQUENCE Basename_seq;
DROP TRIGGER Basename_trigger;

REM Now we want to populate the TBASENAME table

REM First create a VIEW to get a list of distinct BASENAME from LOGMESSAGE table
CREATE VIEW VTBASENAME
 AS
 SELECT DISTINCT BaseName FROM LOGMESSAGE WHERE Basename IS NOT NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE Basename_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER Basename_trigger
BEFORE INSERT ON TBASENAME
FOR EACH ROW
WHEN (new.Base_ID IS NULL)
BEGIN
 SELECT Basename_seq.NEXTVAL

134

 INTO :new.Base_ID
 FROM dual;
END;
/

REM Now, lets populate the TBASENAME table using the VTBASENAME view
INSERT INTO TBASENAME (BaseName) SELECT Basename FROM VTBASENAME;

SELECT * FROM TBASENAME;

SELECT COUNT(*) FROM TBASENAME;

spool off;

135

PopTMessage_Type.sql

Description

This populates the TMESSAGE_TYPE table

spool PopTMessage_Type.log

REM Populate TMESSAGE_TYPE table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTMESSAGE_TYPE CASCADE CONSTRAINTS;
DROP SEQUENCE MessageType_seq;
DROP TRIGGER MessageType_trigger;

REM Now we want to populate the TMESSAGE_TYPE table

REM First create a VIEW of daily logs to get a list of distinct MessageType from
LOGMESSAGE table
CREATE VIEW VTMESSAGE_TYPE
 AS
 SELECT DISTINCT MessageType FROM LOGMESSAGE WHERE MessageType IS NOT
NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE MessageType_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER MessageType_trigger
BEFORE INSERT ON TMESSAGE_TYPE
FOR EACH ROW
WHEN (new.MsgType_ID IS NULL)

136

BEGIN
 SELECT MessageType_seq.NEXTVAL
 INTO :new.MsgType_ID
 FROM dual;
END;
/

REM Now, lets populate the TMESSAGE_TYPE table using the VTMESSAGE_TYPE view
INSERT INTO TMESSAGE_TYPE (MsgType) SELECT MessageType FROM
VTMESSAGE_TYPE;

spool off;

137

PopTReportIP.sql

Description

This populates the TReportIP table

spool PopTReportIP.log

REM Populate TREPORTIP table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTREPORTIP CASCADE CONSTRAINTS;
DROP SEQUENCE REPORTIP_seq;
DROP TRIGGER REPORTIP_trigger;

REM Now we want to populate the TREPORTIP table

REM First create a VIEW of daily logs to get a list of distinct REPORTIP from LOGMESSAGE
table
CREATE VIEW VTREPORTIP
 AS
 SELECT DISTINCT REPORTIP, REPORTIPNUM FROM LOGMESSAGE WHERE
REPORTIP IS NOT NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE REPORTIP_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER REPORTIP_trigger
BEFORE INSERT ON TREPORTIP
FOR EACH ROW

138

WHEN (new.REPORTIP_ID IS NULL)
BEGIN
 SELECT REPORTIP_seq.NEXTVAL
 INTO :new.REPORTIP_ID
 FROM dual;
END;
/

REM Now, lets populate the TREPORTIP table using the VTREPORTIP view
INSERT INTO TREPORTIP (REPORTIP, REPORTIPNUM) SELECT REPORTIP,
REPORTIPNUM FROM VTREPORTIP;

spool off;

139

PopTSourceIP.sql

Description

This populates the TSOURCE_IP table

spool PopTSourceIP.log

REM Populate TSOURCE_IP table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTSOURCE_IP CASCADE CONSTRAINTS;
DROP SEQUENCE SOURCEIP_seq;
DROP TRIGGER SOURCEIP_trigger;

REM Now we want to populate the TSOURCE_IP table

REM First create a VIEW of daily logs to get a list of distinct SOURCEIP from LOGMESSAGE
table
CREATE VIEW VTSOURCE_IP
 AS
 SELECT DISTINCT SOURCEIP, SOURCEIPNUM FROM LOGMESSAGE WHERE
SOURCEIP IS NOT NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE SOURCEIP_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER SOURCEIP_trigger
BEFORE INSERT ON TSOURCE_IP
FOR EACH ROW
WHEN (new.SOURCEIP_ID IS NULL)

140

BEGIN
 SELECT SOURCEIP_seq.NEXTVAL
 INTO :new.SOURCEIP_ID
 FROM dual;
END;
/

REM Now, lets populate the TSOURCE_IP table using the VTSOURCE_IP view with
REM the SOURCEIPs not in the TSOURCE_IP table already
INSERT INTO TSOURCE_IP (SOURCEIP, SOURCEIPNUM) SELECT SOURCEIP,
SOURCEIPNUM FROM VTSOURCE_IP;

spool off;

141

popTSourcePorts.log

Description

This populates the TSOURCEPORTS table

spool popTSourcePorts.log

REM Populate TSOURCEPORTS table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTSOURCEPORTS CASCADE CONSTRAINTS;
DROP SEQUENCE SOURCEPORT_seq;
DROP TRIGGER SOURCEPORT_trigger;

REM Now we want to populate the TSOURCEPORTS table

REM First get a list of distinct SOURCEPORTS from LOGMESSAGE table
CREATE VIEW VTSOURCEPORTS
 AS
 SELECT DISTINCT SourcePort FROM LOGMESSAGE WHERE SourcePort IS NOT NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE SOURCEPORT_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER SOURCEPORT_trigger
BEFORE INSERT ON TSOURCEPORTS
FOR EACH ROW
WHEN (new.SOURCEPORT_ID IS NULL)
BEGIN
 SELECT SOURCEPORT_seq.NEXTVAL

142

 INTO :new.SOURCEPORT_ID
 FROM dual;
END;
/

REM Now, lets populate the TSOURCEPORTS table using the VTSOURCEPORTS view
INSERT INTO TSOURCEPORTS (PortNum) SELECT SourcePort FROM
VTSOURCEPORTS;

spool off;

143

popTDestIP.sql

Description

This populates the TDESTINATION_IP table

spool PopTDestIP.log

REM Populate TDESTINATION_IP table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTDESTINATION_IP CASCADE CONSTRAINTS;
DROP SEQUENCE DestIP_seq;
DROP TRIGGER DestIP_trigger;

REM Now we want to populate the TDESTINATION_IP table

REM First create a VIEW of daily logs to get a list of distinct DestIP from LOGMESSAGE table
CREATE VIEW VTDESTINATION_IP
 AS
 SELECT DISTINCT DestinationIP, DestinationIPNUM FROM LOGMESSAGE WHERE
DestinationIP IS NOT NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE DestIP_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER DestIP_trigger
BEFORE INSERT ON TDESTINATION_IP
FOR EACH ROW
WHEN (new.DestIP_ID IS NULL)
BEGIN

144

 SELECT DestIP_seq.NEXTVAL
 INTO :new.DestIP_ID
 FROM dual;
END;
/

REM Now, lets populate the TDESTINATION_IP table using the VTDESTINATION_IP view
INSERT INTO TDESTINATION_IP (DestIP, DestIPNUM) SELECT DestinationIP,
DestinationIPNUM FROM VTDESTINATION_IP;

spool off;

145

PopTDestPorts.log

Description

This populates the TDESTPORTS table

spool PopTDestPorts.log

REM Populate TDESTPORTS table

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Remove tables and views if exist
DROP VIEW VTDESTPORTS CASCADE CONSTRAINTS;
DROP SEQUENCE DESTPORT_seq;
DROP TRIGGER DESTPORT_trigger;

REM Now we want to populate the TDESTPORTS table

REM First get a list of distinct DESTPORTS from LOGMESSAGE table
CREATE VIEW VTDESTPORTS
 AS
 SELECT DISTINCT DestinationPort FROM LOGMESSAGE WHERE DestinationPort IS
NOT NULL;

REM Since Oracle does not have an autonumber function,
REM we have to create it using a sequence and a trigger

REM Create the sequence
CREATE SEQUENCE DESTPORT_seq
start with 1
increment by 1
nomaxvalue;

REM Create the trigger
CREATE OR REPLACE TRIGGER DESTPORT_trigger
BEFORE INSERT ON TDESTPORTS
FOR EACH ROW
WHEN (new.DESTPORT_ID IS NULL)
BEGIN

146

 SELECT DESTPORT_seq.NEXTVAL
 INTO :new.DESTPORT_ID
 FROM dual;
END;
/

REM Now, lets populate the TDESTPORTS table using the VTDESTPORTS view
INSERT INTO TDESTPORTS (PortNum) SELECT DestinationPort FROM VTDESTPORTS;

spool off;

147

APPENDIX M

Description

This script builds the eight associative link tables.

SPOOL BuildLinkTables.LOG

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Nuke tables in case they exist
DROP TABLE TTIMEZONE_LINK CASCADE CONSTRAINTS;
DROP TABLE TBASENAME_LINK CASCADE CONSTRAINTS;
DROP TABLE TREPORTIP_LINK CASCADE CONSTRAINTS;
DROP TABLE TMESSAGE_TYPE_LINK CASCADE CONSTRAINTS;
DROP TABLE TSOURCE_IP_LINK CASCADE CONSTRAINTS;
DROP TABLE TDESTINATION_IP_LINK CASCADE CONSTRAINTS;
DROP TABLE TSOURCEPORT_LINK CASCADE CONSTRAINTS;
DROP TABLE TDESTPORT_LINK CASCADE CONSTRAINTS;

REM Create the Link Tables that will link the normalized tables to the big table

REM Create TTIMEZONE_LINK table
CREATE TABLE TTIMEZONE_LINK (
 LogID INTEGER NOT NULL,
 TZ_ID INTEGER NOT NULL,
 CONSTRAINT TZLINK_PK PRIMARY KEY (LogID,TZ_ID),
 CONSTRAINT TZLINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT TZLINK_FK2 FOREIGN KEY (TZ_ID) REFERENCES
TTIMEZONE(TZ_ID));

REM Create TBASENAME_LINK table
CREATE TABLE TBASENAME_LINK (
 LogID INTEGER NOT NULL,
 Base_ID INTEGER NOT NULL,
 CONSTRAINT BASELINK_PK PRIMARY KEY (LogID,Base_ID),
 CONSTRAINT BASELINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),

148

 CONSTRAINT BASELINK_FK2 FOREIGN KEY (Base_ID) REFERENCES
TBASENAME(Base_ID));

REM Create TREPORTIP_LINK table
CREATE TABLE TREPORTIP_LINK (
 LogID INTEGER NOT NULL,
 REPORTIP_ID INTEGER NOT NULL,
 CONSTRAINT REPORTIP_PK PRIMARY KEY (LogID,REPORTIP_ID),
 CONSTRAINT REPORTIP_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT REPORTIP_FK2 FOREIGN KEY (REPORTIP_ID) REFERENCES
TREPORTIP(REPORTIP_ID));

REM Create TMESSAGE_TYPE_LINK table
CREATE TABLE TMESSAGE_TYPE_LINK (
 LogID INTEGER NOT NULL,
 MsgType_ID INTEGER NOT NULL,
 CONSTRAINT MESSAGETYPELINK_PK PRIMARY KEY (LogID,MsgType_ID),
 CONSTRAINT MESSAGETYPELINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT MESSAGETYPELINK_FK2 FOREIGN KEY (MsgType_ID) REFERENCES
TMESSAGE_TYPE(MsgType_ID));

REM Create TSOURCE_IP_LINK table
CREATE TABLE TSOURCE_IP_LINK (
 LogID INTEGER NOT NULL,
 SourceIP_ID INTEGER NOT NULL,
 CONSTRAINT SOURCE_IP_LINK_PK PRIMARY KEY (LogID,SourceIP_ID),
 CONSTRAINT SOURCE_IP_LINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT SOURCE_IP_LINK_FK2 FOREIGN KEY (SourceIP_ID) REFERENCES
TSOURCE_IP(SourceIP_ID));

REM Create TDESTINATION_IP_LINK table
CREATE TABLE TDESTINATION_IP_LINK (
 LogID INTEGER NOT NULL,
 DestIP_ID INTEGER NOT NULL,
 CONSTRAINT DESTINATION_IP_LINK_PK PRIMARY KEY (LogID,DestIP_ID),
 CONSTRAINT DESTINATION_IP_LINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT DESTINATION_IP_LINK_FK2 FOREIGN KEY (DestIP_ID) REFERENCES
TDESTINATION_IP(DestIP_ID));

REM Create TSOURCEPORT_LINK table
CREATE TABLE TSOURCEPORT_LINK (
 LogID INTEGER NOT NULL,

149

 SPort_ID INTEGER NOT NULL,
 CONSTRAINT SOURCEPORT_LINK_PK PRIMARY KEY (LogID,SPort_ID),
 CONSTRAINT SOURCEPORT_LINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT SOURCEPORT_LINK_FK2 FOREIGN KEY (SPort_ID) REFERENCES
TSOURCEPORTS(SourcePort_ID));

REM Create TDESTPORT_LINK table
CREATE TABLE TDESTPORT_LINK (
 LogID INTEGER NOT NULL,
 DPort_ID INTEGER NOT NULL,
 CONSTRAINT DESTPORT_LINK_PK PRIMARY KEY (LogID,DPort_ID),
 CONSTRAINT DESTPORT_LINK_FK1 FOREIGN KEY (LogID) REFERENCES
LOGMESSAGE(LogID),
 CONSTRAINT DESTPORT_LINK_FK2 FOREIGN KEY (DPort_ID) REFERENCES
TDESTPORTS(DestPort_ID));

SPOOL OFF;

150

APPENDIX N

PopLinkTables.sql

Description

This populates the associative link tables.

spool PopLinkTables.log

REM Populate link tables

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

REM Now we want to populate the TTIMEZONE_LINK table
INSERT INTO TTIMEZONE_LINK (LogID, TZ_ID)
SELECT l.LogID, t.TZ_ID
FROM Logmessage l JOIN TTimeZone t
ON l.TimeZone = t.TZ;

SELECT * FROM TTIMEZONE_LINK WHERE ROWNUM <21;

REM Now we want to populate the TBASENAME_LINK table
INSERT INTO TBASENAME_LINK (LogID, Base_ID)
SELECT l.LogID, b.Base_ID
FROM Logmessage l JOIN TBASENAME b
ON l.BaseName = b.BaseName;

SELECT * FROM TBASENAME_LINK WHERE ROWNUM <21;

REM Now we want to populate the TREPORTIP_LINK table
INSERT INTO TREPORTIP_LINK (LogID, REPORTIP_ID)
SELECT l.LogID, r.REPORTIP_ID
FROM Logmessage l JOIN TREPORTIP r
ON l.ReportIP = r.ReportIP;

SELECT * FROM TREPORTIP_LINK WHERE ROWNUM <21;

REM Now we want to populate the TMESSAGE_TYPE_LINK table
INSERT INTO TMESSAGE_TYPE_LINK (LogID, MsgType_ID)

151

SELECT l.LogID, m.MsgType_ID
FROM Logmessage l JOIN TMESSAGE_TYPE m
ON l.MessageType = m.MsgType;

SELECT * FROM TMESSAGE_TYPE_LINK WHERE ROWNUM <21;

REM Now we want to populate the TSOURCE_IP_LINK table
INSERT INTO TSOURCE_IP_LINK (LogID, SourceIP_ID)
SELECT l.LogID, sip.SourceIP_ID
FROM Logmessage l JOIN TSOURCE_IP sip
ON l.SourceIP = sip.SourceIP;

SELECT * FROM TSOURCE_IP_LINK WHERE ROWNUM <21;

REM Now we want to populate the TDESTINATION_IP_LINK table
INSERT INTO TDESTINATION_IP_LINK (LogID, DestIP_ID)
SELECT l.LogID, dip.DestIP_ID
FROM Logmessage l JOIN TDESTINATION_IP dip
ON l.DestinationIP = dip.DestIP;

SELECT * FROM TDESTINATION_IP_LINK WHERE ROWNUM <21;

REM Now we want to populate the TSOURCEPORT_LINK table
INSERT INTO TSOURCEPORT_LINK (LogID, SPort_ID)
SELECT l.LogID, s.SourcePort_ID
FROM Logmessage l JOIN TSourcePorts s
ON l.SourcePort = s.PortNum;

SELECT * FROM TSOURCEPORT_LINK WHERE ROWNUM <21;

REM Now we want to populate the TDESTPORT_LINK table
INSERT INTO TDESTPORT_LINK (LogID, DPort_ID)
SELECT l.LogID, d.DestPort_ID
FROM Logmessage l JOIN TDestPorts d
ON l.DestinationPort = d.PortNum;

SELECT * FROM TDESTPORT_LINK WHERE ROWNUM <21;

spool off;

152

APPENDIX O

Description

This is an example of the non-normalized script of 15 queries.

SPOOL NonNormalized.LOG

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON
SET AUTOTRACE TRACEONLY

REM These are the queries using the UNnormalized flat table

REM Query 1: What are the different message types?
select distinct (messagetype) from logmessage;

REM Query 2: What are the different base names?
select distinct (basename) from logmessage order by basename;

REM Query 3: What are the report IPs from each base?
SELECT DISTINCT BASENAME, ReportIP FROM LOGMESSAGE ORDER BY
BASENAME;

REM Query 4: What are the destination ports and how many events?
SELECT Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport LIKE '%'
GROUP BY Destinationport ORDER BY "Number of Events";

REM Query 5: What are the Top 10 destination ports for January?

SELECT * FROM (SELECT Destinationport, "Number of Events", RANK () OVER
 (ORDER BY "Number of Events" DESC) Rank
 FROM (SELECT Destinationport, Count(*) AS "Number of Events"

153

 FROM Logmessage
 WHERE Destinationport LIKE '%'
 AND (logdatetime >= '01-jan-11' and logdatetime<= '31-jan-11')
 GROUP BY Destinationport ORDER BY "Number of Events")
)
WHERE Rank <=10;

REM Query 6: What bases have port 445 as destination port and how many events?
SELECT BaseName, Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '445'
GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

REM Query 7: What bases have port 445 as destination port and how many events in
REM January?
SELECT BaseName, Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '445'
AND (logdatetime >= '01-Jan-11' AND logdatetime<= '31-Jan-11')
GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

REM Query 8: How many events use port 23 (TELNET) as destination port?
SELECT Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '23'
GROUP BY Destinationport ORDER BY "Number of Events";

REM Query 9: What bases have port 23 as destination port and how many events?
SELECT BaseName, Destinationport, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Destinationport = '23'
GROUP BY BaseName, Destinationport ORDER BY "Number of Events";

REM Query 10: What are the bases and message types with message severity of 2 and the
number
REM of events?

154

SELECT DISTINCT Basename, Messagetype, Count(*) AS "Number of Events"
FROM Logmessage
WHERE messagetype LIKE '%-2-%'
GROUP BY Basename, Messagetype ORDER BY "Number of Events";

REM Query 11: What are the bases, ReportIP, message type, with message severity of 2 and the
number
REM of events during the month of January 2011?
SELECT Basename, ReportIP, Messagetype, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Messagetype LIKE '%-2-%'
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";

REM Query 12: What bases have sourceIP from Enemy table in January 2011
REM and what country?

REM First create the Enemy Table
DROP TABLE ENEMY CASCADE CONSTRAINTS;
CREATE TABLE ENEMY AS
 SELECT * FROM IPTOCOUNTRY WHERE (COUNTRY_NAME LIKE 'ISLAMIC
REPUBLIC OF IRAN')
 OR (COUNTRY_NAME LIKE 'CHINA');

SELECT BASENAME, ReportIP, SourceIP, COUNTRY_NAME
FROM LOGMESSAGE L, ENEMY E
WHERE L.SourceIPNum <= E.IP_TO AND L.SourceIPNum >= E.IP_FROM
AND (L.logdatetime >= '01-jan-11' and L.logdatetime <= '31-jan-11');

REM Query 13: What LogID, Basename, ReportIP, SourceIP, Country, Token3, REM and
Token4 have sourceIP from Enemy table that is on the egress
REM list and permitted and what country?

SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY_NAME, Token3, Token4
FROM LOGMESSAGE L, ENEMY E
WHERE L.SourceIPNum <= E.IP_TO AND L.SourceIPNum >= E.IP_FROM
AND TOKEN3 LIKE '%egress%'
AND TOKEN4 = 'permitted';

155

REM Query 14: What Basename, ReportIP, SourceIP, COUNTRY_NAME, DestinationIP
REM Egress/Ingress (Token3), Permitted/Denied (Token4) did a source IP address from Enemy
table
REM show up in the log?

SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP COUNTRY_NAME,
Token3, Token4
FROM Logmessage, Enemy
WHERE SourceIP = '203.171.234.174'
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >=
Enemy.IP_FROM);

REM Query 15: What are the Top 10 message types in the log?
SELECT * FROM (SELECT MessageType, "Number of Events", RANK () OVER
 (ORDER BY "Number of Events" DESC) Rank
 FROM (SELECT MessageType, Count(*) AS "Number of Events"
 FROM Logmessage
 WHERE MessageType LIKE '%'
 GROUP BY MessageType ORDER BY "Number of Events")
)
WHERE Rank <=10;

SPOOL OFF;

156

APPENDIX P

Description

This is an example of the normalized script of 15 queries.

SPOOL Normalized.LOG

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON
SET AUTOTRACE ON STATISTICS
SET AUTOTRACE TRACEONLY

REM These are the queries using ONLY the normalized/summary tables

REM Query 1: What are the different message types?
SELECT MsgType FROM TMESSAGE_TYPE ORDER BY MsgType;

REM Query 2: What are the different base names?
SELECT BaseName FROM TBASENAME ORDER BY BaseName;

REM Query 3: What are the report IPs from each base?
SELECT DISTINCT BaseName, ReportIP
FROM TBASENAME, TBASENAME_LINK, TREPORTIP, TREPORTIP_LINK
WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID
AND TBASENAME_LINK.LOGID = TREPORTIP_LINK.LOGID
AND TREPORTIP_LINK.REPORTIP_ID = TREPORTIP.REPORTIP_ID
ORDER BY BaseName;

REM Query 4: What are the destination ports and how many events?

SELECT DISTINCT PortNum, Count(*) AS "Number of Events"
FROM TDESTPORTS, TDESTPORT_LINK
WHERE TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
GROUP BY PortNum ORDER BY "Number of Events";

157

REM Query 5: What are the Top 10 destination ports for January?

SELECT * FROM (SELECT Destinationport, "Number of Events",
 RANK () OVER (ORDER BY "Number of Events" DESC) RANK
 FROM (SELECT Destinationport, Count(*) AS "Number of Events"
 FROM Logmessage
 WHERE Logmessage.LOGID IN (SELECT TDESTPORT_LINK.LOGID
 FROM TDESTPORTS, TDESTPORT_LINK
 WHERE TDESTPORTS.DestPort_ID = TDESTPORT_LINK.DPort_ID)
 AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-
11')
GROUP BY Destinationport ORDER BY "Number of Events")
)
WHERE RANK <=10;

REM Query 6: What are the bases with port 445 as destination port and how many events?

SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(*) AS
"Number of Events"
FROM TBASENAME, TBASENAME_LINK, TDESTPORTS, TDESTPORT_LINK
WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID
AND TBASENAME_LINK.LOGID = TDESTPORT_LINK.LOGID
AND TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
AND TDESTPORTS.PortNum = '445'
GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of
Events";

REM Query 7: What are the bases with port 445 as destination port and how many events in
REM January?

SELECT BASENAME, DestinationPort, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Logmessage.LogID IN (SELECT TDESTPORT_LINK.LOGID
FROM TDESTPORTS, TDESTPORT_LINK
WHERE TDESTPORTS.DestPort_ID = TDESTPORT_LINK.DPort_ID
AND TDESTPORTS.PortNum = '445')
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
GROUP BY BASENAME, DestinationPort ORDER BY "Number of Events";

REM Query 8: How many events have port 23 (TELNET) as destination port?

SELECT DISTINCT PortNum, Count(*) AS "Number of Events"
FROM TDESTPORTS, TDESTPORT_LINK

158

WHERE TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
AND TDESTPORTS.PortNum = '23'
GROUP BY PortNum ORDER BY "Number of Events";

REM Query 9: What baseS use port 23 (TELNET) and how many?

SELECT DISTINCT TBASENAME.BASENAME, TDESTPORTS.PortNum, Count(*) AS
"Number of Events"
FROM TBASENAME, TBASENAME_LINK, TDESTPORTS, TDESTPORT_LINK
WHERE TBASENAME.Base_ID = TBASENAME_LINK.Base_ID
AND TBASENAME_LINK.LOGID = TDESTPORT_LINK.LOGID
AND TDESTPORT_LINK.DPort_ID = TDESTPORTS.DestPort_ID
AND TDESTPORTS.PortNum = '23'
GROUP BY TBASENAME.BASENAME, TDESTPORTS.PortNum ORDER BY "Number of
Events";

REM Query 10: What are the bases and message types with message severity of 2 and the
number
REM of events?

SELECT DISTINCT Basename, Msgtype, Count(*) AS "Number of Events"
FROM TBASENAME, TBASENAME_LINK, TMESSAGE_TYPE,
TMESSAGE_TYPE_LINK
WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID
AND TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID
AND TBASENAME_LINK.LOGID = TMESSAGE_TYPE_LINK.LOGID
AND TMESSAGE_TYPE.MSGTYPE LIKE '%-2-%'
GROUP BY Basename, Msgtype ORDER BY "Number of Events";

REM Query 11: What are the bases, ReportIP, message type, with message severity of 2 and the
number
REM of events during the month of January 2011?

SELECT Basename, ReportIP, Messagetype, Count(*) AS "Number of Events"
FROM Logmessage
WHERE Logmessage.LOGID IN (
SELECT TMESSAGE_TYPE_LINK.LOGID
FROM TMESSAGE_TYPE, TMESSAGE_TYPE_LINK
WHERE TMESSAGE_TYPE_LINK.MSGTYPE_ID = TMESSAGE_TYPE.MSGTYPE_ID
AND TMESSAGE_TYPE.MSGTYPE LIKE '%-2-%')
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')

159

GROUP BY Basename, ReportIP, Messagetype ORDER BY "Number of Events";

REM Query 12: What bases have sourceIP from Enemy table in January 2011
REM and what country and reportIP?

REM First create the Enemy Table
DROP TABLE ENEMY CASCADE CONSTRAINTS;
CREATE TABLE ENEMY AS
 SELECT * FROM IPTOCOUNTRY WHERE (COUNTRY_NAME LIKE 'ISLAMIC
REPUBLIC OF IRAN')
 OR (COUNTRY_NAME LIKE 'CHINA');

SELECT Basename, ReportIP, SourceIP, COUNTRY_NAME
FROM Logmessage, Enemy
WHERE Logmessage.LOGID IN (
SELECT TBASENAME_LINK.LOGID
FROM TBASENAME, TBASENAME_LINK, TSOURCE_IP, TSOURCE_IP_LINK
WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID
AND TSOURCE_IP.SOURCEIP_ID = TSOURCE_IP_LINK.SOURCEIP_ID
AND TBASENAME_LINK.LOGID = TSOURCE_IP_LINK.LOGID)
AND (Logmessage.logdatetime >= '01-jan-11' and Logmessage.logdatetime <= '31-jan-11')
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >=
Enemy.IP_FROM);

REM Query 13: What LogID, Basename, ReportIP, SourceIP, Country, Token3, REM and
Token4 have sourceIP from Enemy table that is on the egress
REM list and permitted and what country?

SELECT LogID, Basename, ReportIP, SourceIP, COUNTRY_NAME, Token3, Token4
FROM Logmessage JOIN Enemy
ON Logmessage.LOGID IN (
SELECT TBASENAME_LINK.LOGID
FROM TBASENAME, TBASENAME_LINK, TSOURCE_IP, TSOURCE_IP_LINK
WHERE TBASENAME.BASE_ID = TBASENAME_LINK.BASE_ID
AND TSOURCE_IP.SOURCEIP_ID = TSOURCE_IP_LINK.SOURCEIP_ID
AND TBASENAME_LINK.LOGID = TSOURCE_IP_LINK.LOGID)
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >=
Enemy.IP_FROM)
AND TOKEN3 LIKE '%egress%'
AND TOKEN4 = 'permitted';

160

REM Query 14: What Basename, ReportIP, SourceIP, COUNTRY_NAME, DestinationIP
REM Egress/Ingress (Token3), Permitted/Denied (Token4) did a source IP address from Enemy
table
REM show up in the log?

SELECT SourceIP, LogDateTime, Basename, ReportIP, DestinationIP, COUNTRY_NAME,
Token3, Token4
FROM Logmessage, Enemy
WHERE Logmessage.LogID IN (SELECT TSOURCE_IP_LINK.LogID
FROM TSOURCE_IP, TSOURCE_IP_LINK
WHERE TSOURCE_IP.SourceIP_ID = TSOURCE_IP_LINK.SourceIP_ID
AND TSOURCE_IP.SourceIP = '203.171.234.174')
AND (Logmessage.SourceIPNum <= Enemy.IP_TO and Logmessage.SourceIPNum >=
Enemy.IP_FROM);

REM Query 15: What are the Top 10 message types in the log?

SELECT * FROM (SELECT MsgType, "Number of Events",
 RANK () OVER (ORDER BY "Number of Events" DESC) RANK
 FROM (SELECT MsgType, Count(*) AS "Number of Events"
 FROM TMESSAGE_TYPE, TMESSAGE_TYPE_LINK
 WHERE TMESSAGE_TYPE.MsgType_ID =
TMESSAGE_TYPE_LINK.MsgType_ID
 GROUP BY MsgType ORDER BY "Number of Events")
)
WHERE RANK <=10;

SPOOL OFF;

161

APPENDIX Q

RunNNQueries.sql

Description

This script invokes the 32 individual non-normalized queries.

spool RunNNQueries.log

REM Run non-Normalized Queries 20x

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

@15NN1
@15NN2
@15NN3
@15NN4
@15NN5
@15NN6
@15NN7
@15NN8
@15NN9
@15NN10
@15NN11
@15NN12
@15NN13
@15NN14
@15NN15
@15NN16
@15NN17
@15NN18
@15NN19
@15NN20
@15NN21
@15NN22
@15NN23
@15NN24
@15NN25

162

@15NN26
@15NN27
@15NN28
@15NN29
@15NN30
@15NN31
@15NN32

spool off;

163

APPENDIX R

RunNQueries.sql

Description

This script invokes the 32 individual normalized queries.

spool RunNQueries.log

REM Run Normalized Queries

SET ECHO ON
SET HEADING ON
SET NEWPAGE NONE
SET LINESIZE 500
SET FEEDBACK ON
SET COLSEP '|'
SET TIMING ON

@15N1
@15N2
@15N3
@15N4
@15N5
@15N6
@15N7
@15N8
@15N9
@15N10
@15N11
@15N12
@15N13
@15N14
@15N15
@15N16
@15N17
@15N18
@15N19
@15N20
@15N21
@15N22
@15N23
@15N24
@15N25
@15N26

164

@15N27
@15N28
@15N29
@15N30
@15N31
@15N32

spool off;

165

APPENDIX S

Dataset

Description

This is the dataset collected and entered into SPSS. The unit of measurement is in seconds.

RunQueryType Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

NNRun1 1 179.81 185.4 191.71 180.7 183.31 179.06 183.62 183.4 179.87 180.78 180.32 3764.04 182.84 179.93 180.75

NNRun2 1 178.86 183.1 182.59 179.78 181.84 181.14 184.68 185.79 183.46 180.82 180.59 4176.65 180.92 181.12 181.59

NNRun3 1 182.06 179.96 181.17 181.68 182.56 192.29 208.51 178.95 184.07 185.42 180.81 3764.95 178.9 182.09 182.03

NNRun4 1 182.28 181.81 178.96 182.89 183.62 180.76 185 179.96 182.78 183.39 183.14 4007.18 183.79 185.76 181.07

NNRun5 1 182.68 184.23 182.39 182.64 179.53 182.64 181.57 182.28 182.37 179.82 180.25 3761.68 183.6 183.51 178.9

NNRun6 1 182.81 181.2 179.78 182.68 183.67 179.71 181.98 179.57 181.61 201.98 185.32 4273.17 181.29 183.75 179.12

NNRun7 1 181.82 182.54 182.1 181.39 182.98 182.75 182.4 178.96 181.25 180.18 182.39 3881.81 190.71 178.71 183.92

NNRun8 1 185.7 181.5 182.1 179.04 214.4 182.45 180.7 180.82 179.79 183.15 182.65 4214.01 183.11 186.92 180.62

NNRun9 1 179.54 183.6 194.82 184.04 185.46 178.84 182.54 183.59 181.71 181.1 178.84 3898.81 186.17 181.04 180.62

NNRun10 1 180.4 181.73 183.26 182.14 180.18 182.03 183.15 186.31 182.17 179.14 180.85 4205.53 179.12 184.82 182.29

NNRun11 1 180.03 181.48 178.92 182.78 182.87 179.73 181.17 181.93 182.51 184.76 179.57 3885.4 181.7 183.31 180.89

NNRun12 1 181.65 178.39 182.26 183.29 182.43 181.75 178.7 180.64 182.65 180.87 181.81 4226.67 180.11 182.42 180.73

NNRun13 1 181.65 182.86 179.82 180.75 183.32 180.89 182.01 180.76 179.75 180.59 181.01 3890.14 181.75 178.64 184.2

166

NNRun14 1 185.4 180.68 183.23 180.29 184.5 181.96 178.76 180.81 180.36 184.15 182.15 4207.17 183.32 182.64 180.43

NNRun15 1 179.96 182.21 183.62 186.42 184.62 180.34 180.15 183.79 182.18 181.42 178.93 3903.81 182.73 180.56 179.57

NNRun16 1 182.7 172.5 174.45 179.9 177.82 173.15 173.1 175.03 175.03 176.15 174.04 3823.14 177.09 176.93 175.95

NNRun17 1 175.09 173.04 175.98 175.9 175.92 174.03 173.21 174.23 174.96 175.25 172.81 3530.39 174.48 173.04 180.35

NNRun18 1 176.21 174.18 178.59 172.78 175.45 178.34 174.25 175.56 173.15 175.7 176.17 3821.92 176.18 173.04 175.14

NNRun19 1 176.34 175.28 174.89 173.51 176.92 174.09 176.09 177.31 173.51 174.75 178.26 3525.53 179.95 173.48 175.57

NNRun20 1 173.17 178 175.06 175.5 175.39 172.92 175.37 176.57 173.75 175.86 187 3856.09 176.9 174.46 175.76

NNRun21 1 173.96 178.7 179.28 175.87 175.32 172.85 178.84 176.28 174.14 175.15 175.26 3556.14 176.84 176.37 177.37

NNRun22 1 174.87 174.15 175.48 178.23 177.18 174.57 174.4 176.17 181.64 177.51 175.61 3826.89 176.59 176.71 178.53

NNRun23 1 174.68 174.17 175.26 178.48 176.98 176 174.71 175.53 177.31 175.95 174.57 3524.82 176.48 173.87 178.98

NNRun24 1 181.48 177.37 177.71 174.68 177.71 176.59 175.89 177.61 173.64 176.53 174.6 3820.64 176.92 173.92 178.01

NNRun25 1 177.45 176.37 176.4 174.32 177.32 177.32 177.62 176.21 174.12 178.21 175.54 3521.92 177.28 174.84 176.57

NNRun26 1 174.87 176.92 177.78 175.21 176.4 174.75 178.54 176.67 176.37 177.96 173.4 3822.48 180.18 176.21 177.93

NNRun27 1 177.57 177.85 178.34 175.42 176.4 173.89 177.6 177.9 174.87 176.1 174 3526.59 177.11 178.21 178.79

NNRun28 1 175.75 175.78 176.73 179.59 178.73 176 175.07 177.93 179.07 178.17 174.68 3823.48 176.17 177.31 177.25

NNRun29 1 175.96 175.1 176.89 179.18 177.04 176.12 175.48 174.54 178.89 179.36 175.03 3534.01 178.68 177.15 199.37

NNRun30 1 180.81 175.26 177.62 175.68 176.79 183.03 176.21 176.43 174.32 177.9 177.51 3821.75 176.65 175.25 178.26

NNRun31 1 180.35 175.53 178.73 176.18 179.87 177.39 176 176.21 174.14 178.21 176.46 3526.96 178.25 176.07 176.98

NNRun32 1 177.68 178.46 178.09 176.07 177.76 175.31 178.43 180.57 176.32 176.75 175.7 3823.06 180.04 177.48 178.64

NRun1 2 0.03 0 144.42 6.25 226.7 23.32 490.65 5.04 24.71 38.29 342.84 790.71 261.1 8.35 23.21

NRun2 2 0 0 165.76 6.96 227.98 22.6 419.14 5.86 23.04 32.35 345.42 764.85 256.35 8.71 20.15

167

NRun3 2 0 0 141.95 7.06 228.2 18.48 416.48 6.48 22 32.03 352.92 804.93 258.37 8.87 21.18

NRun4 2 0 0 143.06 6.78 227.34 21.5 415.26 10.76 26.84 32.7 321.53 761.71 255.65 7.14 20.51

NRun5 2 0.09 0 148.67 9.23 255.57 22.92 419.43 5.56 21.96 34.93 341.42 773.48 263.12 8.43 20.75

NRun6 2 0.06 0.01 146.64 7.36 231.04 22.92 450.29 5.59 23.21 33.48 337.43 758.54 259.36 11.18 20.93

NRun7 2 0 0 144.61 8.17 221.04 16.68 417.92 5.42 26.18 44.14 330.54 760.1 253.04 7.6 21.76

NRun8 2 0 0 141.32 6.75 225.26 18.14 412.34 4.9 21.31 27.01 338.76 775.68 259.46 7.85 20.06

NRun9 2 0 0 144.15 6.84 225.39 20.42 461.84 6 24.54 31.78 329.48 764.39 255.79 5.93 20.93

NRun10 2 0.01 0 146.78 7.09 229.03 23.12 412.23 6.78 22.51 34.45 333.1 752.87 281.51 7.59 21.5

NRun11 2 0.01 0 146.64 6.53 225.04 21.04 425.46 5.87 23.65 35.36 321.89 768.81 255.21 10.2 21.35

NRun12 2 0 0 140.54 6.53 224.71 19.79 419.04 5.68 23.25 35.56 370.15 755.62 254.96 7.59 21.32

NRun13 2 0 0 144.18 6.75 223.39 19.86 416.26 4.92 22.29 29.21 326.6 763.29 259.18 7.31 21.75

NRun14 2 0 0 153.15 7.07 224.25 22.9 412.03 4.56 18.36 29.48 329.15 758.34 256.37 7.4 22.4

NRun15 2 0 0 144.75 6.75 223.14 22.51 425.68 6.01 20.87 33.18 325.04 792.32 260.84 7.56 21.64

NRun16 2 0.06 0.03 142.46 7.42 233.26 24.32 494.17 7.89 25.03 31.07 338.92 789.4 280.81 5.32 21.62

NRun17 2 0.01 0.07 142.75 7.23 228.2 24.14 429.81 6.79 25.87 25.29 332.54 764.76 255.09 7.78 21.67

NRun18 2 0 0.17 142.57 6.9 224.29 22.73 402.95 4.95 23.6 33.68 372.5 756.18 254.65 7.87 20.51

NRun19 2 0 0 142.67 7.45 224.53 27.06 431.65 5.56 23.21 33.45 336 767.07 253.31 8.03 21.73

NRun20 2 0 0.01 220.85 6.87 232.25 25.79 439.85 5.68 22.73 31.79 325.45 756.48 255.78 8.04 21.14

NRun21 2 0 0 141.56 7.5 226.43 21.31 424.26 5.25 24.15 31.17 320.2 793.95 258.81 6.73 20.56

NRun22 2 0 0 142.6 6.78 224 20.65 419.31 6.84 19.65 31.5 346.18 760.65 252.4 5.32 21.06

NRun23 2 0 0 141.31 6.39 227.12 30.29 434.26 4.78 22.98 33.51 346 756.42 256.98 8.51 20.31

168

NRun24 2 0 0 143.07 7.12 224.14 18.9 409.56 5.25 22.43 35.14 338.36 758.71 256.68 6.76 21.25

NRun25 2 0.01 0 143.28 8.29 227.62 46.64 421.32 5.37 22.67 32.39 335.48 777.65 257.15 7.9 20.45

NRun26 2 0 0.09 141.23 6.76 226.45 22.71 462.12 10.68 22.75 33.25 319.92 765.29 256.68 7.37 20.67

NRun27 2 0 0 144.85 6.65 227.64 22.79 411.43 5.51 24.39 32.89 331.98 763.64 278.18 8.12 20.85

NRun28 2 0 0 144.28 7.76 223.5 17.84 433.45 5.84 22.06 36.23 320.31 760.29 255.15 11.25 20.95

NRun29 2 0 0.1 144.9 6.62 226.46 22.12 407.89 5.68 23.43 35.4 359.82 767.53 257.07 5.2 19.92

NRun30 2 0 0 147.98 6.82 224.89 18.46 440.86 5.57 23.31 33.01 320.15 781.5 256.03 8.11 20.31

NRun31 2 0 0 153.71 7.01 225.45 23.03 420.6 5.11 23.5 25.78 342.81 763.67 259.64 7.95 20.32

NRun32 2 0 0 145.14 7.6 223.73 24.06 426.78 4.64 16.84 28.03 329.4 811.12 258.36 7.59 21.95

169

APPENDIX T

SPSS Output: Independent Samples Test

 Levene's Test

for Equality of

Variances t-test for Equality of Means

F Sig. t df Sig. (2-tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval

of the Difference

 Lower Upper

Q1

Equal variances assumed 91.353 .000 300.253 62 .000 179.16594 .59672 177.97312 180.35876

Equal variances not assumed 300.253 31.002 .000 179.16594 .59672 177.94893 180.38295

Q2

Equal variances assumed 101.004 .000 278.553 62 .000 178.71469 .64158 177.43218 179.99719

Equal variances not assumed 278.553 31.007 .000 178.71469 .64158 177.40618 180.02319

Q3

Equal variances assumed 2.134 .149 12.237 62 .000 32.25562 2.63583 26.98668 37.52457

Equal variances not assumed 12.237 37.069 .000 32.25562 2.63583 26.91526 37.59599

Q4 Equal variances assumed 61.590 .000 272.229 62 .000 171.86625 .63133 170.60424 173.12826

170

Equal variances not assumed 272.229 32.859 .000 171.86625 .63133 170.58159 173.15091

Q5

Equal variances assumed .581 .449 -28.927 62 .000 -46.36719 1.60293 -49.57139 -43.16299

Equal variances not assumed -28.927 60.213 .000 -46.36719 1.60293 -49.57328 -43.16109

Q6

Equal variances assumed .379 .540 132.653 62 .000 155.73906 1.17403 153.39221 158.08591

Equal variances not assumed 132.653 59.292 .000 155.73906 1.17403 153.39008 158.08805

Q7

Equal variances assumed 17.805 .000 -61.935 62 .000 -249.33031 4.02570 -257.37757 -241.28305

Equal variances not assumed -61.935 36.130 .000 -249.33031 4.02570 -257.49379 -241.16683

Q8

Equal variances assumed 25.719 .000 272.259 62 .000 173.04656 .63560 171.77602 174.31710

Equal variances not assumed 272.259 42.386 .000 173.04656 .63560 171.76422 174.32890

Q9

Equal variances assumed 28.285 .000 209.341 62 .000 155.57625 .74317 154.09067 157.06183

Equal variances not assumed 209.341 48.495 .000 155.57625 .74317 154.08240 157.07010

Q10

Equal variances assumed .847 .361 134.553 62 .000 147.04844 1.09287 144.86383 149.23305

Equal variances not assumed 134.553 56.241 .000 147.04844 1.09287 144.85937 149.23751

Q11

Equal variances assumed 20.825 .000 -63.425 62 .000 -157.90687 2.48968 -162.88368 -152.93007

Equal variances not assumed -63.425 35.612 .000 -157.90687 2.48968 -162.95809 -152.85566

171

Q12

Equal variances assumed 34.776 .000 74.213 62 .000 3065.84000 41.31114 2983.26020 3148.41980

Equal variances not assumed 74.213 31.260 .000 3065.84000 41.31114 2981.61378 3150.06622

Q13

Equal variances assumed 2.546 .116 -55.522 62 .000 -79.28844 1.42805 -82.14307 -76.43381

Equal variances not assumed -55.522 44.586 .000 -79.28844 1.42805 -82.16541 -76.41146

Q14

Equal variances assumed 38.343 .000 228.634 62 .000 170.93750 .74765 169.44298 172.43202

Equal variances not assumed 228.634 38.232 .000 170.93750 .74765 169.42427 172.45073

Q15

Equal variances assumed 10.650 .002 208.922 62 .000 158.79594 .76007 157.27657 160.31530

Equal variances not assumed 208.922 32.824 .000 158.79594 .76007 157.24924 160.34263

172

APPENDIX U

Statistical information about the actual event logs.

1. Number of records in the event logs:

30,721,104

2. Number of bases in the event logs:

43

3. Date range of the logs:

19-OCT-10 06.00.26.00000 AM to 04-Mar-11 11.59.55.000000 AM

4. Number of message types:

169

5. Number of events for each month:

October

 6642

November

 36237

December

 4828245

January

 13934721

Febuary

 10347568

March

 427357

173

6. Number of rows from each base:

'Altus': 66783
'Andersen': 99464
'CapeCod': 19986
'Cavalier': 1701
'Charleston': 189990
'Clear': 121976
'Columbus': 81173
'DiegoGarcia': 16957
'Dover': 10277
'Elmendorf': 34661
'Fairchild': 887871
'FEWarren': 398925
'Guam: 21251
'Hickam': 343545
'Kadena': 35842
'KaenaPoint': 15985539
'Keesler': 180701
'Kunsan': 124285
'Lackland': 1366585
'Laughlin': 29870
'LosAngeles': 1087035
'Luke': 432406
'MacDill': 24
'Malmstrom': 738313
'McChord': 299468
'McConnell': 60
'McGuire': 234
'NewBoston': 128303
'Oakhanger': 610043
'Onizuka': 814354
'Osan': 46321
'Patrick': 24838
'Pope': 55136
'Randolph': 266027
'Randolph-NOSC': 182062
'Scott-NOSC': 194029
'Sheppard': 68633
'Thule': 450173
'Travis': 19482
'Tyndall': 336178
'USAFA': 1153317
'Vandenberg': 3279791
'Yokota': 17452

174

7. Number of events with message types:

'SEC-6-IPACCESSLOGP';
 COUNT(*)

 8908417

'SEC-6-IPACCESSLOGDP';
 COUNT(*)

 1554588

'SEC-6-IPACCESSLOGNP';
 COUNT(*)

 20309

'SEC-6-IPACCESSLOGRL';
 COUNT(*)

 667451

'SEC-6-IPACCESSLOGRP';
 COUNT(*)

 15029

'SEC-6-IPACCESSLOGS';
 COUNT(*)

 289062

8. Bases that use a second Router Sequence Number
Andersen
Guam
Hickam
Kadena
KaenaPoint
Kunsan
Malmstrom
McConnell
NewBoston
Pope
Sheppard

9. The different message types found in the logs:

175

MESSAGETYPE

AMDP2_FE-5-LATECOLL
AUTHMGR-5-FAIL
AUTHMGR-5-START
AUTHMGR-5-SUCCESS
Attempte
Attempted
Attempting
Authentication
BGP-3-NOTIFICATION
BGP-5-ADJCHANGE
Blocking
C6KPWR-SP-2-PSFAIL
C6KPWR-SP-4-INPUTCHANGE
C6KPWR-SP-4-PSNOREDUNDANCY
C6KPWR-SP-4-PSOK
C6KPWR-SP-4-PSOUTPUTDROP
C6KPWR-SP-4-PSREDUNDANTBOTHSUPPLY
C6KPWR-SP-4-PSREDUNDANTMISMATCH
C6KPWR-SP-4-PSREDUNDANTONESUPPLY
CDP-4-DUPLEX_MISMATCH
CDP-4-NATIVE_VLAN_MISMATCH
CI-3-PSFAIL
CLEAR-5-COUNTERS
CONTROLLER-5-UPDOWN
CRYPTO-4-IKMP_NO_SA
CRYPTO-4-PKT_REPLAY_ERR
CRYPTO-4-RECVD_PKT_INV_SPI
CRYPTO-4-RECVD_PKT_MAC_ERR
Card
Clear
Configure
Configured
DIAG-SP-6-DIAG_OK
DIAG-SP-6-RUN_MINIMUM
DOT1X-5-FAIL
DOT1X-5-SUCCESS
DTP-SP-5-DOMAINMISMATCH
DUAL-5-NBRCHANGE
DVMRP-5-NBRDOWN
DVMRP-5-NBRUP
EC-5-CANNOT_BUNDLE2
EC-5-COMPATIBLE
EC-5-L3DONTBNDL2

176

EC-SP-5-CANNOT_BUNDLE2
EIGRP-IPv4:(511)
EIGRP-IPv4:(513)
ENTITY_ALARM-6-INFO
ENVIRONMENT-2-FAN_FAULT
Extended
FABRIC-SP-5-CLEAR_BLOCK
FABRIC-SP-5-FABRIC_MODULE_BACKUP
FastEthernet0/1
FastEthernet0/12
FastEthernet0/15
FastEthernet0/17
FastEthernet0/18
FastEthernet0/2
FastEthernet0/20
FastEthernet0/22
FastEthernet0/23
FastEthernet0/24
FastEthernet0/7
Firewalled
Group
HARDWARE-2-FAN_ERROR
HARDWARE-5-FAN_OK
Host
IP-3-LOOPPAK
IP-EIGRP(0)
ISSU_PROCESS-SP-3-SYSTEM
Interfac
Interface
LINEPROTO-5-UPDOWN
LINK-3-UPDOWN
LINK-4-ERROR
LINK-5-CHANGED
Lin
Line
MAB-5-FAIL
MLS_RATE-4-DISABLING
MV64340_ETHERNET-5-LATECOLLISION
Module
NHRP-4-QUOTA
NTP-4-PEERUNREACH
NTP-6-PEERREACH
Native
Netflow
OIR-3-LONGSTALL
OIR-6-INSCARD

177

OIR-6-REMCARD
OIR-SP-6-INSCARD
OSPF-5-ADJCHG
PFINIT-SP-5-CONFIG_SYNC
PFREDUN-SP-4-BOOTSTRING_INVALID
PFREDUN-SP-4-VERSION_MISMATCH
PIM-5-DRCHG
PIM-5-NBRCHG
PLATFORM_ENV-1-FAN
PM-4-ERR_DISABLE
PM-4-ERR_RECOVER
PM-4-SVI_ADD_CORRESPONDING_L2_VLAN
PORT_SECURITY-2-PSECURE_VIOLATION
PORT_SECURITY-2-SECURITYREJECT
PORT_SECURITY-6-VLAN_REMOVED
Port
RADIUS-3-NOSERVERS
RADIUS-4-RADIUS_ALIVE
RADIUS-4-RADIUS_DEAD
RCMD-4-RSHPORTATTEMPT
RF-SP-5-RF_TERMINAL_STATE
RTD-1-LINK_FLAP
Received
SEC-6-IPACCESSLOGDP
SEC-6-IPACCESSLOGNP
SEC-6-IPACCESSLOGP
SEC-6-IPACCESSLOGRL
SEC-6-IPACCESSLOGRP
SEC-6-IPACCESSLOGS
SNMP
SNMP-3-AUTHFAIL
SNMP-5-CHASSISALARM
SNMP-5-COLDSTART
SNMP-5-MODULETRAP
SPANTREE-2-BLOCK_BPDUGUARD
SPANTREE-SP-2-BLOCK_PVID_LOCAL
SPANTREE-SP-2-BLOCK_PVID_PEER
SPANTREE-SP-2-LOOPGUARD_BLOCK
SPANTREE-SP-2-LOOPGUARD_UNBLOCK
SPANTREE-SP-2-RECV_PVID_ERR
SPANTREE-SP-2-UNBLOCK_CONSIST_PORT
SSH
SSH-4-SSH2_UNEXPECTED_MSG
SSH-5-DISABLED
SSH-5-ENABLED
STACKMGR-4-STACK_LINK_CHANGE

178

STACKMGR-5-MASTER_READY
STACKMGR-5-SWITCH_READY
SW_VLAN-6-VTP_DOMAIN_NAME_CHG
SW_VLAN-SP-4-VTP_USER_NOTIFICATION
SYS-3-CPUHOG
SYS-5-CONFIG
SYS-5-CONFIG_I
SYS-5-RELOAD
SYS-5-RESTART
SYS-5-SCHEDULED_RELOAD
SYS-5-SCHEDULED_RELOAD_CANCELLED
SYS-6-BOOTTIME
SYS-6-CLOCKUPDATE
SYS-6-LOGGINGHOST_STARTSTOP
SYS-SP-3-LOGGER_FLUSHED
SYSTEM_CONTROLLER-3-ERROR
Security
Status
Sync'ing
System
TAC-3-SECRETDEFINEFAILED
TCP-6-BADAUTH
The
Unblocking
VPN_HW-1-PACKET_ERROR
Vlan239
Vlan24
Vlan747
access-list
list
neighbor
power
psecure-violation
sent

10. Message types with message severity of 1 and the number of events

MSGTYPE Number of Events

RTD-1-LINK_FLAP 5

PLATFORM_ENV-1-FAN 20

VPN_HW-1-PACKET_ERROR 48

179

APPENDIX V

Excerpts of the actual results from the queries (Q5-Q10):

Query 5: What are the Top 10 destination ports for January?

DESTINATIONPORT Number of Events RANK

 53 1117081 1

 0 1002738 2

 445 119130 3

 137 96312 4

 139 64883 5

 161 60630 6

 80 34504 7

 5060 27736 8

 22 19256 9

 51715 18014 10

180

Query 6: What are the bases with port 445 as destination port and how many events?

BASENAME PORTNUM Number of Events

Andersen 445 2

Randolph 445 5

CapeCod 445 11

Scott-NOSC 445 35

Malmstrom 445 143

LosAngeles 445 192

Thule 445 237

Onizuka 445 610

USAFA 445 679

FEWarren 445 777

Tyndall 445 1971

NewBoston 445 3125

Patrick 445 3310

Lackland 445 3344

Clear 445 9900

McChord 445 40939

Vandenberg 445 311819

181

Query 7: What are the bases with port 445 as destination port and how many events in
January?

BASENAME DESTINATIONPORT Number of Events

CapeCod 445 2

Randolph 445 4

Scott-NOSC 445 10

Tyndall 445 13

Malmstrom 445 36

Thule 445 37

LosAngeles 445 84

USAFA 445 99

Onizuka 445 158

FEWarren 445 702

Patrick 445 1039

NewBoston 445 1059

Lackland 445 1291

Clear 445 3277

McChord 445 10076

Vandenberg 445 101243

Query 8: How many events have port 23 (TELNET) as destination port?

 PORTNUM Number of Events

 23 21307

182

Query 9: What bases use port 23 (TELNET) and how many?

BASENAME PORTNUM Number of Events

Scott-NOSC 23 4

LosAngeles 23 6

McChord 23 106

Columbus 23 109

Dover 23 151

Sheppard 23 152

McGuire 23 159

Randolph 23 162

Travis 23 187

Laughlin 23 208

Onizuka 23 340

Andersen 23 426

CapeCod 23 490

Luke 23 510

NewBoston 23 623

Patrick 23 669

Malmstrom 23 2891

Thule 23 4327

FEWarren 23 4484

Clear 23 5303

183

Query 10: What are the bases and message types with message severity of 2 and the
number of events?

BASENAME MSGTYPE Number of

Andersen PORT_SECURITY-2-PSECURE_VIOLATION 1

Elmendorf PORT_SECURITY-2-PSECURE_VIOLATION 1

Luke SPANTREE-SP-2-LOOPGUARD_UNBLOCK 2

Luke SPANTREE-SP-2- 2

Pope PORT_SECURITY-2-SECURITYREJECT 2

Vandenberg SPANTREE-2-BLOCK_BPDUGUARD 2

Columbus PORT_SECURITY-2-PSECURE_VIOLATION 2

Vandenberg PORT_SECURITY-2-PSECURE_VIOLATION 2

Luke SPANTREE-SP-2-LOOPGUARD_BLOCK 2

Tyndall PORT_SECURITY-2-SECURITYREJECT 4

Luke SPANTREE-SP-2-BLOCK_PVID_LOCAL 5

Luke SPANTREE-SP-2-BLOCK_PVID_PEER 5

Luke SPANTREE-SP-2-RECV_PVID_ERR 5

Tyndall PORT_SECURITY-2-PSECURE_VIOLATION 6

FEWarren ENVIRONMENT-2-FAN_FAULT 7

FEWarren HARDWARE-2-FAN_ERROR 10

Hickam PORT_SECURITY-2-PSECURE_VIOLATION 12

Lackland C6KPWR-SP-2-PSFAIL 14

Randolph PORT_SECURITY-2-PSECURE_VIOLATION 16

Altus PORT_SECURITY-2-SECURITYREJECT 128

Clear PORT_SECURITY-2-PSECURE_VIOLATION 753

Fairchild PORT_SECURITY-2-PSECURE_VIOLATION 118362

Randolph- PORT_SECURITY-2-SECURITYREJECT 178964

184

Bibliography

Air Intelligence Agency Public Affairs. (2006, 7/5/2006). Air force stands up first

network warfare wing. 2011(May 15), Available:

http://www.af.mil/news/story_print.asp?id=123022799

Alavi, M. & Leidner, D. E. (2001). Review: Knowledge management and knowledge

management systems: Conceptual foundations and research issues. MIS Quarterly

25(1), 107-136.

Anderson, J. P. (1980). Computer security threat monitoring and surveillance. No. 98.

Technical report. James P. Anderson Company: Fort Washington, Pennsylvania.

Apte, C., Liu, B., Pednault, E. P. D., & Smyth, P. (2002). Business applications of data

mining. Communications of the ACM, 45(8), 49-53.

Babbin, J., Kleiman, D., Carter, E. F., Faircloth, J., Burnett, M., & Gutierrez, E. (2006).

Security log management. Identifying patterns in the chaos. Syngress

Publishing: Rockland, MA.

Baker, W., Hutton, A., Hylender, C. D., Pamula, J., Porter, C., & Spitler, M. (2011).

2011 Data breach investigations report: Verizon RISK Team with cooperation

from the U.S. Secret Service and the Dutch High Tech Crime Unit. Retrieved

from http://www.secretservice.gov/Verizon_Data_Breach_2011.pdf

Blue Coat (2011) Retrieved from

https://kb.bluecoat.com/index?page=content&id=FAQ1246&actp=search&viewlo

cale=en_US&searchid=1306532896872

Brenton, C., Bird, T., & Ranum, M. (2006). Top 5 essential log reports. Retrieved from

http://www.sans.org/security-resources/top5_logreports.pdf

185

Cisco (2011). Understanding access control list logging. Retrieved from

http://www.cisco.com/web/about/security/intelligence/acl-logging.html

Committee on National Security Systems (CNSS). (2010). National Information

Assurance (IA) Glossary. (CNSS Instruction No. 4009).

Davenport, T. H., & Prusak, L. (2000). Working knowledge: How organizations manage

what they know. Boston, Massachusetts: Harvard Business School Press.

Department of Defense. (1973). ADP Security Manual: Techniques and Procedures for

Implementing, Deactivating, Testing and Evaluating Secure Resource-Sharing

ADP Systems. (DOD 5200.28-M). Washington, DC.

Donley, M. B., & Schwartz, N. A. (2009). Memorandum for all airmen: Air force

cyberspace mission alignment. Unpublished manuscript.

Dunham, M. (2003). Data mining introductory and advanced topics. New Jersey:

Pearson.

Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems.

Human Factors, 37(1), 65-84.

Feld, C. S. & Stoddard, D. B. (2004). Getting IT right. Harvard Bussiness Review 82(2),

72-79.

Field, A. (2009) Discovering statistics using SPSS. London: SAGE Publications.

Gerhards, R. (2009). The syslog protocol RFC 5424. Retrieved from

 http://tools.ietf.org/html/rfc5424

Grimaila, M. R., Myers, J., Mills, R. F., & Peterson, G. (2011). Design and analysis of a

dynamically configured log-based distributed security event detection

186

methodology. The Journal of Defense Modeling and Simulation: Applications,

Methodology, Technology, 1-23. doi: 10/1177/1548512911399303

Grimes, R. A., (2010, August 4). InfoWorld review: Better network security, compliance

with log management. Retrived from http://www.infoworld.com/d/data-

explosion/infoworld-review-meeting-the-network-security-and-compliance-

challenge-658?page=0,0.

Hasan, M., Sugla, B., & Viswanathan, R. (1999). A conceptual framework for network

management event correlation and filtering systems. Paper presented at the

Integrated Network Management, 1999. Distributed Management for the

Networked Millennium. Proceedings of the Sixth IFIP/IEEE International

Symposium, 233-246.

Heinbockel, W. (2011, July 8). CEE Event Record and CLS Encoding Specification

draft-cee-cls-06-8. Retrieved from

http://cee.mitre.org/repository/downloads/CEE_Common_Log_Syntax-

v0.6.html#core-fields

Heinbockel, W., & Graves, T. (2011). Introduction to CEE v0.6. Retrieved from

http://scap.nist.gov/events/2011/itsac/presentations/day3/Heinbockel%20-

%20CEE.pdf

Hoffer, J. A., Prescott, M. B., & Toppi, H. (2009) Modern database management. Upper

Saddle River, NJ: Pearson Prentice Hall.

Hucaby, D. (2005, Nov 4). Cisco ASA and PIX firewall logging. Retrieved from

http://www.ciscopress.com/articles/article.asp?p=424447

187

Inmon, W. H. (2000). What is a data warehouse? Retrieved from

https://www.business.auc.dk/oekostyr/file/What_is_a_Data_Warehouse.pdf

Jabbour, K. & Muccio, S. (2011). The science of mission assurance. Journal of Strategic

Security, 6(2), 61-74.

Jakobson, G., Weissman, M., Brenner, L., Lafond, C., & Matheus, C. (2000). GRACE:

Building next generation event correlation services. Paper presented at the

Network Operations and Management Symposium, 2000. NOMS 2000. 2000

IEEE/IFIP, 701-714.

Kent, K., & Souppaya, M. (2006) Guide to computer security log management. (NIST

Special Publication 800-92).

Lee, H. (1995). Justifying database normalization: A cost/benefit model. Information

Processing & Management, 31(1), 59-67.

Lonvick, C. (2001). The BSD syslog protocol RFC 3164. Retrieved from

http://tools.ietf.org/html/rfc3164

Martin-Flatin, J. P., Jakobson, G., & Lewis, L. (2007). Event correlation in integrated

management: Lessons learned and outlook. Journal of Network and Systems

Management, 15(4), 481-502.

Microsoft (2011a). Interpreting the windows firewall log. 2011(May 15), Available:

http://technet.microsoft.com/en-us/library/cc758040(WS.10).aspx

Microsoft (2011b). Types of event log entries. Retrieved from

 http://msdn.microsoft.com/en-us/library/zyysk5d0.aspx

MITRE (2010a, May 27). CEE Terminology. Retrieved from

http://cee.mitre.org/terminology.html

188

MITRE (2010b, May 27). Frequently Asked Questions. Retrieved from

http://cee.mitre.org/faqs.html#a2

MITRE (2010c). Common Event Expression, Architecture Overview. Retrieved from

http://cee.mitre.org/docs/CEE_Architecture_Overview-v0.5.pdf

Myers, J. (2010). A dynamically configurable log-based distributed security event

detection methodology. (Unpublished masteral thesis). Air Force Institute of

Technology, Wright-Patterson Air Force Base, Ohio.

Ogasawara, E., Martinez, L. C., de Oliveira, D., Zimbrão, G., Pappa, G. L., & Mattoso,

M. (2010). Adaptive normalization: A novel data normalization approach for non-

stationary time series. Paper presented at the Neural Networks (IJCNN), the 2010

International Joint Conference, 1-8.

Okolica, J., McDonald, J. T., Peterson, G. L., Mills, R. F., & Hass, M. (2009).

Developing systems for cyber situational awareness. Proceedings of the 2nd

Cyberspace Research Workshop. Shreveport, LA.

Oracle database reference 10g release 2 (10.2) (2005). Analyze. Retrieved from

 http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_4005.htm

Oracle database reference 10g release 2 (10.2) (2009). Statistics Description. Retrieved

from

 http://docs.oracle.com/cd/B19306_01/server.102/b14237/stats002.htm

Pipkin, D. L. (2000). Information security: protecting the global enterprise. Upper

Saddle River, NJ: Prentice Hall PTR.

Plivna, G. (2008, July 28). SQL join types. Retrieved from

http://www.gplivna.eu/papers/sql_join_types.htm

189

Rist, O. (2005). Attack of the auditors. InfoWorld 27(12), 34-40.

Sah, A. (2002). A new architecture for managing enterprise log data. LISA, 121-132.

Sanders, G., & Shin, S. (2001). Denormalization effects on performance of RDBMS.

Paper presented at the HICSS, 3013.

Shenk, J. (2009). SANS annual 2009 log management survey. A SANS Whitepaper.

Retrieved from

http://www.sans.org/reading_room/analysts_program/logMgtSurvey_Apr09.pdf

Shenk, J. (2010). SANS sixth annual log management survey report. SANS Sixth

Annual Log Management Survey Report. SANS Whitepaper. Retrieved from

http://www.sans.org/reading_room/analysts_program/logmgtsurvey-2010.pdf

Shin, B. (2003). An exploratory investigation of system success factors in data

warehousing. Journal of the Association for Information Systems, 4, 141-168.

Tripwire. (2010). All Logs Archived. Every log available. Retrieve from

http://www.tripwire.com/it-security-software/log-event-management/log-

management/

Tuomi, I. (2000). Data is more than knowledge: Implications of the reversed knowledge

hierarchy for knowledge management and organizational memory. Journal of

Management Information Systems 16(3), 103-117.

Vaarandi, R. (2002). Platform independent event correlation tool for network

management. IEEE. Department of Computer Engineering, Tallinn Technical

University, Estonia. 907-909.

Van den Hoven, J. (2001) Information resource management: Foundation for knowledge

management. Information Systems Management 18(2), 80-87.

190

Weldon, J. L. (1996). Data mining and visualization. Database Programming & Design,

9(6), 21-24.

Wyllys, R. E. (2010, October 25). Steps in normalization. Retrieved from

 http://www.gslis.utexas.edu/~wyllys/DMPAMaterials/normstep.html#Section%20

10.%20The%204th%20Normal%20Form

191

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

22-03-2012
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Mar 2011 - Mar 2012
4. TITLE AND SUBTITLE

Analysis Of The Impact Of Data Normalization On Cyber Event Correlation
Query Performance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ludovice, Smile T., MSgt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GIR/ENV/12-M03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally left blank.
10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A critical capability required in the operation of cyberspace is the ability to maintain situational awareness of the status of the
infrastructure elements that comprise cyberspace. Event logs from cyber devices can yield significant information, and when
properly utilized can provide timely situational awareness about the state of the cyber infrastructure. In addition, proper
Information Assurance requires the validation and verification of the integrity of results generated by a commercial log
analysis tool. Event log analysis can be performed using relational databases. To enhance database query performance,
previous literatures affirm denormalization of databases; yet, database normalization can also increase query performance.
Database normalization improved majority of the queries performed using very large data sets of router events; however,
performance is also dependent on the type of query executed. Queries performed faster on normalized table if all the
necessary data are contained in the normalized tables. Furthermore, database normalization improves table organization and
maintains better data consistency than non-normalized. Nonetheless, there are some tradeoffs when normalizing a database
such as additional preprocessing time and extra storage requirements though minimal in this experiment. Overall,
normalization improved query performance and must be considered as an option when analyzing event logs using relational
databases.

15. SUBJECT TERMS

Query Performance, Database, Normalization, Event Logs

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

193

19a. NAME OF RESPONSIBLE PERSON

Michael R. Grimaila, PhD, CISSP, CISM
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 X4800, michael.grimaila@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

